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Abstract
Online services and cloud applications such as graph applications, messaging systems,

coordination services, HPC applications, social networks and deep learning rely on

key-value stores (KVSes), in order to reliably store and quickly retrieve data. KVSes

are NoSQL Databases with a read/write/read-modify-write API. KVSes replicate their

dataset in a few servers, such that the KVS can continue operating in the presence of

faults (availability). To allow programmers to reason about replication, KVSes specify

a set of rules (consistency), which are enforced through the use of replication protocols.

These rules must be intuitive to facilitate programmer productivity (programmability).

A general-purpose KVS must maximize the number of operations executed per

unit of time within a predetermined latency (performance) without compromising on

consistency, availability or programmability. However, all three of these guarantees

are at odds with performance. In this thesis, we explore the design of the replication

layer of a general-purpose KVS, which is responsible for navigating this trade-off, by

specifying and enforcing the consistency and availability guarantees of the KVS.

We start the exploration by observing that modern, server-grade hardware with

manycore servers and RDMA-capable networks, challenges conventional wisdom in

protocol design. In order to investigate the impact of these advances on protocols and

their design, we first create an informal taxonomy of strongly-consistent replication

protocols. We focus on strong consistency semantics because they are necessary for a

general-purpose KVS and they are at odds with performance. Based on this taxonomy

we carefully select 10 protocols for analysis. Secondly, we present Odyssey, a frame-

work tailored towards protocol implementation for multi-threaded, RDMA-enabled,

in-memory, replicated KVSes. Using Odyssey, we characterize the design space of

strongly-consistent replication protocols, by building, evaluating and comparing the

10 protocols.

Our evaluation demonstrates that some of the protocols that were efficient in yes-

terday’s hardware are not so today because they cannot take advantage of the abundant

parallelism and fast networking present in modern hardware. Conversely, some proto-

cols that were inefficient in yesterday’s hardware are very attractive today. We distil

our findings in a concise set of general guidelines and recommendations for protocol

selection and design in the era of modern hardware.

The second step of our exploration focuses on the tension between consistency

and performance. The problem is that expensive strongly-consistent primitives are

necessary to achieve synchronization, but in typical applications only a small fraction
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of accesses is actually used for synchronization. To navigate this trade-off, we advocate

the adoption of Release Consistency (RC) for KVSes. We argue that RC’s one-sided

barriers are ideal for capturing the ordering relationship between synchronization and

non-synchronization accesses while enabling high performance.

We present Kite, a general-purpose, replicated KVS that enforces RC through a

novel fast/slow path mechanism that leverages the absence of failures in the typical

case to maximize performance, while relying on the slow path for progress. In ad-

dition, Kite leverages our study of replication protocols to select the most suitable

protocols for its primitives and is implemented over Odyssey to make the most out of

modern hardware. Finally, Kite does not compromise on consistency, availability or

programmability, as it provides sufficient primitives to implement any algorithm (con-

sistency), does not interrupt its operation on a failure (availability), and offers the RC

API that programmers are already familiar with (programmability).
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Lay Summary

Modern online services run on the cloud. Cloud providers build the cloud out

of big warehouses that are filled with interconnected computers. They then rent out

these computers to companies and entities of all scales, which use them to deploy

their applications. For instance, a government may rent some computers to execute an

application, that allows citizens to book vaccination appointments.

However, building applications that can execute in multiple computers is a daunting

task, especially because at any time one or more of these computers may crash. To

mitigate this problem, cloud providers implement a lot of the required infrastructure to

build cloud applications and offer it as a service to the renters.

One such key service is the key-value store (KVS) that allows programmers to

read and write memory. Specifically, the KVS maintains a set of values, each associ-

ated with a unique name, which is called key. The keys allow the users of the KVS

to refer to values when communicating with the KVS, such that they can request from

the KVS to read or write them. For example, the programmers that build the vacci-

nation application, may use the KVS to store the vaccination date of Alice, by per-

forming a write. The most crucial requirement of the KVS is that it will not loose this

vaccination date in the future. Therefore, unlike writing the memory of a computer,

which can crash, a write to the KVS is guaranteed to survive in the face of computer

crashes. To achieve this, a KVS replicates the vaccination date in the memory of mul-

tiple computers. Therefore when one computer crashes, the KVS can remain available,

continuously serving reads and writes. This guarantee is called availability.

However, replicating the vaccination date in different computers invites a new prob-

lem. When the application uses the KVS to change the vaccination date for Alice, it

better be that it is not possible to later read the old vaccination date, from some other

replica. To avoid such problems, the KVS specifies a set of rules, called consistency

model, that allows the programmers to reason about how replication is managed. Un-

der the hood, the KVS enforces these rules by taking actions when executing writes

and reads. For example, a write may have to update all replicas before completing.

There is a trade-off between the strictness of the consistency model and the perfor-

mance of the KVS, i.e., the number of reads and writes the KVS can execute per unit

of time. On the one hand, a stricter consistency model makes it easier for programmers

to implement their applications. On the other hand the stricter the model the harder it

is to enforce, thus reducing performance.
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In this thesis, we explore the replication layer of KVSes, such that we can maximize

its performance, while ensuring availability along with an intuitive consistency model

that is sufficient to implement any application.
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Chapter 1

Introduction

From menial to crucial, everyday tasks depend on online services. Such services pro-

vide an interface over storage and functionality that is implemented inside datacenters.

All over the world, numerous such datacenters of various scale – from garage to ware-

house – work tirelessly to serve user requests by performing tasks such as retrieving

and searching web pages, filling digital baskets with goods, interacting with other users

and many more.

These tasks are performed by cloud applications, such as graph applications, mes-

saging systems, coordination services, HPC applications, social networks and deep

learning. These cloud applications rely on key-value stores (KVSes), in order to reli-

ably store and quickly retrieve data [20, 34, 79, 166]. KVSes are “NoSQL” Databases

with a read/write/read-modify-write API. In order to tolerate server failures, replicated

KVSes replicate the dataset in multiple servers (typically 3-7 [79]).

Whilst necessary, replication gives rise to a number of complicated trade-offs. This

thesis focus on the replication layer of KVSes, which is responsible for managing these

trade-offs. Specifically, we will design the replication layer of a general-purpose KVS,

that can be either offered by cloud providers as a service to their clients [3], or be used

as part of the cloud infrastructure to build more complex services [79].

1.1 Replication Layer of General-Purpose KVSes

In this section, we specify the constraints, the goals and the scope for the design of a

replication layer for general-purpose KVSes. To do so, we first present four metrics

that are crucial for KVSes: performance, availability, consistency and programmabil-

ity.
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1.1.1 Performance, Availability, Consistency and Programmability

Performance is a very intuitive goal, as increasing the performance of a KVS means

that a fixed number of requests can be served with fewer resources (i.e., fewer servers,

lower energy costs etc.). Performance can be measured by throughput: the number of

requests that the KVS can serve per unit time without exceeding some predetermined

latency.

KVSes are faced with the reality that the various components that comprise a data-

center (software stacks, servers, networks, storage mediums) will eventually fail [32].

Therefore, they cannot guarantee that no request will ever exceed the predetermined

latency. Rather, they guarantee that most of the time, requests will be served within

that latency. An example of such a guarantee can be that 99.9% of the time requests

are served within 100 milliseconds [32]. This percentage is called availability, i.e., the

percentage of time during which the service remains responsive [32, 72].

For example, consider a KVS that is replicated in 5 servers and operates for one

year. During that year, the KVS was operating continuously with the exception of

a 5-minute period following a server crash, during which it could not respond to any

requests. In this case, we will say that the KVS was unavailable for 5 minutes out of the

whole year, and therefore its availability was 99,999%, or “five nines”. Unavailability

periods can result in big financial and productivity losses, as well as bad press [2, 4, 7],

rendering high availability an extremely important goal for online services.

To reduce such unavailability periods, operators replicate a KVS across multiple

servers (typically 3 to 7 [79]). Because data is replicated, the KVS must specify a con-

sistency model as part of its interface. A consistency model is a set of rules that dictates

what values a read can return [134]. Plainly, these rules describe the synchronization

patterns that parallel programs can use when executing over the KVS [62]. For exam-

ple, the consistency model can guarantee that if Alice changes her social media status

at 3 pm with a write, then Bob will be able to read this new status, if he issues a read

at a later time (e.g., 3:01 pm).

KVSes enforce the consistency model through replication protocols. A replication

protocol specifies the sufficient actions to be performed along with every operation

in order to enforce the consistency model. In our example, a protocol can guarantee

that Bob reads Alice’s status by mandating that 1) every write must be propagated to a

majority of a replicas and 2) every read must consult a majority of replicas.

Consistency guarantees can vary from weak (aka “eventual” [161]) consistency to
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strong. Strong consistency primitives are necessary in general-purpose KVSes in or-

der to allow programmers to write parallel applications [3, 25, 29, 166]. However,

strongly consistent operations invariably incur a higher performance overhead than

weaker ones [24, 73, 121]. Offering high availability exacerbates this trade-off, be-

cause, as we will see in Chapter 3, the strongly-consistent replication protocols with

the highest performance do not offer high availability.

To navigate this trade-off between performance consistency and availability, re-

searchers have come up with a solution that now comprises the state-of-the-art: multi-

ple consistency level (MCL) KVSes [3, 22, 44, 79, 110, 156, 166]. MCL KVSes enable

the programmer to trade consistency for performance by requiring them to specify the

consistency needs for each access.

While consistency captures whether programmers can express their application,

programmability captures the ease with which they can do so and thus how productive

they can be. For instance, MCL KVSes hinder programmability because they require

that programmers reason about the implementation-centric consistency level of each

and every access. Rather, programmability mandates that an API should provide pro-

grammers with an intuitive, programmer-centric interface [63].

1.1.2 Constraints, Goals and Scope

The four metrics (performance, availability, consistency and programmability) form

an intricate trade-off. Strong consistency is needed by the programmers, but it reduces

performance. Exacerbating this, the most performant protocols for strong consistency

are ruled out when also requiring availability. Similarly, offering programmability

rules out hard-to-use APIs that can hurt productivity.

The replication layer of the KVS is responsible for navigating the trade-off. We

use the term replication layer to describe the consistency and availability guarantees

provided by the KVS and the replication protocol (or combination of protocols) em-

ployed to enforce these guarantees. Notably, programmability indirectly falls within

the responsibilities of the replication layer, as it depends on the consistency guarantees

that are provided.

Constraints. The goal of this thesis is to design a replication layer that maximizes

performance for a general-purpose KVS. Such a KVS must not compromise on con-

sistency, availability or programmability. Plainly, a KVS cannot be general-purpose

unless 1) it provides the necessary consistency guarantees for programmers to express
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their algorithms (consistency), 2) provides high availability, such that it can be de-

ployed in any scenario (availability) and 3) enables programmers to use it without

requiring expertise on the system’s implementation (programmability).

Goals. Therefore our goal is to design a replication layer that maximizes performance

without making any compromises on the other three metrics. Crucially, we want to

ensure that the general-purpose nature of the KVS does not slow it down, but rather

it is reflected in performance. Plainly, when no consistency guarantees are required

by the programmer, then the fact that the system can offer strong consistency should

not hinder performance. Similarly, in an environment without failures, performance

should not degrade just because the system can guarantee high availability.

Scope. We limit the scope of our exploration in two ways. First, we focus on a KVS

that will be deployed within the datacenter as opposed to across datacenters. Such

KVSes are always needed, because even applications that replicate across datacen-

ters to survive catastrophic failures, will still need to replicate within each datacen-

ter [5, 8, 9, 10, 12, 44]. We establish this dichotomy between inter and intra-datacenter

replication, because their network characteristics are very different. Specifically, when

operating within a datacenter, the network is much more predictable, with signifi-

cantly lower latency and significantly higher bandwidth than operating across data-

centers [90, 127]. These differences in network assumptions call for very different

designs to maximize performance, resulting into said dichotomy. In Chapter 3, we will

revisit the impact of modern networks on the design of replication protocols.

Second, we will focus on a KVS with a read/write/read-modify-write (RMW) API.

Some systems also offer distributed transactions [49, 88, 92]. While, transactions are

an important field of research, they require a distinctly different approach than reads,

writes and RMWs. For this reason, we choose to focus our attention on building a read,

write, RMW system, noting that 1) any application can be developed over such system

and 2) this is a commonly used API in practice [20, 79, 127, 166]. Notably, we extend

the typical read/write API with RMWs. This is because RMWs are necessary for some

types of applications and are commonly provided by KVSes [25, 29, 144, 166].

1.2 Approach

To design a general-purpose replication layer, this thesis takes a holistic, hardware-

aware, two-step approach that draws inspiration from the world of shared memory.
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First, we characterize the performance of strongly-consistent protocols in the era of

modern hardware. In doing so, we uncover the best implementation practices, and the

best protocol design practices. Second, we combine these insights with best practices

from the world of shared memory, to build a system that maximizes performance for

all consistency requirements, without sacrificing availability or programmability. We

overview these two steps in the next two sections. In Section 1.3, we summarize the

contributions of this thesis.

1.2.1 Replication design in the era of modern hardware

Our first step towards the design of the replication layer of a general-purpose KVS is

to explore the design of replication protocols for strong consistency semantics.

We start our exploration with the observation that over the last 10-15 years, the

server-grade hardware landscape has changed drastically [31]. Servers with two or

four cores per chip have given way to many-core chips with tens of cores, kernel-

based 1 Gbps networking has given way to user-level, remote direct memory access

(RDMA) networking with 10s or 100s of Gbps and finally, main memory has been

scaled to 100s of GBs with 10s of Gbps worth of bandwidth [48, 146]. We refer to this

generation of hardware as modern hardware.

There are two challenges arising from the advent of modern hardware: 1) how

do existing protocols fare on modern hardware and 2) identifying the best practices

on protocol design such that they can leverage the modern capabilities to maximize

performance.

To tackle these challenges, we first create an informal taxonomy of replication pro-

tocols, based on which we carefully select ten protocols for analysis. Then we present

Odyssey, a framework tailored towards protocol implementation for multi-threaded,

RDMA-enabled, in-memory, replicated KVSes. We implement all ten protocols over

Odyssey, and perform the first apples-to-apples comparison of replication protocols

over modern hardware.

Our comparison characterizes the protocol design space, revealing the performance

capabilities of different classes of protocols on modern hardware. Among other things,

our results demonstrate that some of the protocols that were efficient in yesterday’s

hardware are not so today because they cannot take advantage of the abundant paral-

lelism and fast networking present in modern hardware. Conversely, some protocols

that were inefficient in yesterday’s hardware are very attractive today. We distill our
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findings in a concise set of best practices and recommendations for protocol selection

and protocol design in the era of modern hardware.

1.2.2 Navigating the performance/consistency trade-off

Having explored how to maximize performance when offering strong consistency, we

now must ensure that we also achieve maximum performance for varying consistency

requirements. Plainly, we must ensure that the consistency-induced cost on perfor-

mance occurs only when the programmer requires synchronization. We must do so

without compromising on programmability, or availability.

As discussed earlier in this chapter, the state-of-the-art solution to navigate the

consistency/performance trade-off is to expose it to the programmer through multiple

consistency levels (MCL) KVSes. We argue that this approach falls short in both pro-

grammability and performance. Specifically, the MCL APIs 1) sacrifice programma-

bility by asking programmers to reason about the implementation-centric consistency

level for each and every access and 2) leave performance on the table, as they fail

to capture the ordering relationship between strongly- and weakly-consistent accesses

that naturally occur in programs.

Taking inspiration from shared memory, we advocate Release Consistency (RC) [64]

for KVSes. We argue that RC’s one-sided barriers maximize performance by capturing

the ordering relationship between synchronization and non-synchronization accesses,

which is why hardware vendors have been increasingly adopting RC [23, 120, 164]. In

addition, RC provides a very natural interface for programmers by requiring that they

only annotate their synchronization rather than reasoning about consistency, which

is why RC has been adopted by many high-level languages (e.g., C/C++ [33, 80],

Java [124], Rust [96]).

We present a fast/slow path mechanism that enforces RC by leveraging the ab-

sence of failures in the common case to maximize performance while relying on the

slow path for progress. Putting it all together, we implement Kite, a replicated, in-

memory KVS that offers a read, write, RMW API. Kite maximizes performance by

leveraging 1) Odyssey to make the most out of modern hardware, 2) our study of repli-

cation protocols to select the most performant protocols for its primitives and 3) our

fast/slow path mechanism to implement RC. Furthermore Kite does not compromise

on consistency, availability or programmability, as it 1) provides sufficient primitives

to implement any algorithm (consistency), 2) combines highly available replication
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protocols with our highly available fast/slow path mechanism (availability), and 3) of-

fers the RC API that programmers are already familiar with (programmability). To the

best of our knowledge, Kite is the first highly available replicated KVS that offers RC.

Our evaluation shows that Kite bridges the gap between strong and weak consis-

tency, incurring a performance penalty only when synchronization is used. Specifi-

cally, Kite comes within 31%-12% of weak consistency performance, for a workload

with significant synchronization (5% of accesses). We further demonstrate the efficacy

of Kite by porting three lock-free shared-memory workloads, showing that using RC

allows Kite to significantly outperform the upper bound estimate of an MCL KVS.

1.3 Summary

Online services and cloud applications rely on key-value stores (KVSes) to store

and retrieve data in the presence of faults. KVSes are “NoSQL” Databases with a read,

write, RMW API. In this thesis, we design the replication layer of a general-purpose,

replicated KVS that maximizes performance without compromising on availability,

consistency or programmability.

First, in Chapter 2 we establish the necessary background material. In Chapter 3

we perform a study of strongly consistent replication protocols and we build Odyssey,

a framework that allows developers to easily design, measure and deploy replication

protocols over modern hardware. In Chapter 4 we leverage both our study of replica-

tion protocols and the Odyssey framework to build and present Kite, the first highly-

available, replicated KVS that offers Release Consistency by employing a novel fast/s-

low path mechanism. Finally, in Chapter 5, we summarize our results and sketch future

directions.





Chapter 2

Background

In this section, we provide the background material that is necessary to describe our

contributions. First, we describe the basics of key-value stores, along with the data

structure and the hardware infrastructure we will use for our evaluation (§2.1). Second,

we discuss consistency models (§2.2). Third, we specify the failure model that we will

assume for our design (§2.3) and finally, we introduce replication protocols (§2.4).

2.1 Key-Value Stores

This section provides a brief overview of our assumptions for the KVS, for which we

provide a pictorial view in Figure 2.1. A key-value store (KVS) is a system that stores

a set of objects. Each object is a unique key-value pair. In order to remain available in

the face of faults, KVSes replicated this set of objects across multiple servers (typically

across 3 to 7 [79]). Note that throughout this thesis the terms machines, servers, nodes

and replicas are used interchangeably.

The clients of the KVS are applications that issue read, write, and read-modify-

write (RMW) requests for the objects. The KVS is responsible for performing the

requested operations and replying back when an operation has completed along with

a value if needed (i.e., for reads and RMWs). Clients establish connections with the

KVS through sessions. The order in which requests appear within a session constitutes

the session order.

9
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KVS 

Machine A

MICA

RDMA

Machine B

MICA

Machine C

MICA

Figure 2.1: A KVS that consists of three machines, interconnected with an RDMA-capable

network. Each machine stores the dataset in a MICA kvs-structure.

2.1.1 KVS-structure

Each of the 3 to 7 servers that comprise the replicated KVS hold the entire set of key-

value pairs in-memory. The data structure used to store the objects in memory, is also

often called a key-value store. To avoid confusion, in this thesis the term “KVS” refers

to the entire system; we refer to the data structure as “kvs-structure”.

In all systems implemented throughout this thesis, we use MICA [116] for the kvs-

structure. MICA is a state-of-the-art kvs-structure comprised of an array of buckets

and a log. Each bucket is an array of indices, each of which points to the location of

a key-value pair in the log. The log is a contiguous memory area, which stores the

key-value pairs. To retrieve a key-value pair, MICA gets as input a key, it uses a hash

function to locate the appropriate bucket, which then leads to the corresponding value

in the log. The value of the key can itself be a user-defined data structure.

In Section 3.3.3, we will see how we modify MICA to support different replication

protocols. Figure 2.1 provides a pictorial view of the KVS.

2.1.2 Modern hardware

We aspire to design a system that will purposefully leverage the capabilities of today’s

modern hardware. We make three assumptions for the hardware infrastructure of mod-

ern datacenters [16, 32, 48, 57, 146]. First, servers include a few tens of hardware

threads, often distributed in a NUMA fashion in two sockets. Second, the main mem-

ory of each server is in the hundreds of GBs. Third, servers are interconnected with
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S1

Write (x=1) Read (x=1)

Initially x = 0

S2

Read (x=2)

S4

Write (x=2)

Read (x=1)

S3

Read (x=2)

Figure 2.2: A violation of per-key SC: S2 reads first x = 1 and then x = 2, while S3 reads them

in the reverse order. This means that from the perspective of S2, S4’s write (x = 2) serializes

after S1’s write (x = 1), while from the perspective of S3 the reverse is true.

high-bandwidth, user-level, hardware-offloaded, RDMA-capable networking.

2.1.3 Hardware Infrastructure

We conduct our experiments on an in-house cluster of 5 servers that matches our as-

sumptions for modern datacenter hardware. Specifically, the servers are interconnected

via a 12-port Infiniband switch (Mellanox MSX6012F-BS). Each server runs Ubuntu

18.04 and is equipped with two 10-core CPUs (Intel Xeon E5-2630v4) with two hard-

ware threads per core, reaching a total of 40 hardware threads. Furthermore each

server has 64 GB of system memory and a single-port 56Gb Infiniband NIC (Mel-

lanox MCX455A-FCAT PCIe-gen3 x16). We disable turbo-boost, pin threads to cores

and use huge pages (2 MB) for MICA.

2.2 Consistency

Different client sessions communicate through the KVS by accessing the same data.

When doing so, these sessions must implement a form of synchronization, such as con-

dition synchronization or mutual exclusion [144]. However, because data is replicated,

it may not be that all types of synchronization will work. As part of their specification,

KVSes include a consistency model, that describes how the KVS appears to manage

its replicas [134] and whose purpose is to specify which types of synchronization are

allowed [62].

Consistency guarantees are often described through litmus tests [17]. Litmus tests

are small, example executions that are used to demonstrate the synchronization pat-

terns allowed (or disallowed) by consistency models [62]. Below, we overview four

different consistency models that we will encounter in this thesis, using litmus tests to

demonstrate some of their aspects.
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S1 S2

Write (x=1)

Read (y=0)

Write (y=1)

Read (x=1)

Initially x =0, y = 0

S1

Write (x=1) Read (x=1)

Read (x=1)

Initially x =0, y = 0

S2 S3 S4

Read (y=0)

Write (y=1) Read (y=1)

a) Dekker's algorithm b) IRIW

Figure 2.3: Two litmus tests for SC. In the left-hand side, a) depicts Dekker’s algorithm for

mutual exclusion, where the read to y from S1 precedes the write to y from S2, and thus SC

mandates that S2 must read that x = 1. In the right-hand side, b) depicts the independent-reads

independent-writes (IRIW) litmus test, where SC mandates that S4 must read x = 1.

2.2.1 Per-key Sequential Consistency (per-key SC)

A number of different weak consistency models with various guarantees [155] are cat-

egorized as variants of Eventual Consistency [161], all of which mandate that replicas

must converge in the absence of new updates. We identify per-key Sequential Con-

sistency (per-key SC) [44, 58, 118, 159] as an intuitive, well-defined variant of EC.

Per-key SC mandates that: 1) all sessions agree on one single order of writes for any

given key (aka write serialization) and 2) reads and writes to the same key appear to

perform in session order.

Figure 2.2 depicts an execution that violates per-key SC. Sessions S1 and S4 in-

dependently write to x. However, S2 and S3 do not agree on the order in which these

two writes are serialized. Specifically, from the perspective of S2, S4’s write (x = 2)

serializes after S1’s write (x = 1), while from the perspective of S3 the reverse is true.

2.2.2 Sequential Consistency (SC)

SC mandates that reads and writes (across all keys) from each session appear to take

effect in some total order that is consistent with session order [100]. Informally, SC

makes it appear as if there were no data replication under the hood [100]. As a result,

SC allows for all types of synchronization. Figure 2.3 depicts two well-known litmus

tests that are upheld by SC: Dekker’s algorithm for mutual exclusion [47] and the

independent-reads independent-writes (IRIW) pattern [134].

However, SC does not uphold orderings inferred from real time. For example in

Figure 2.4, session S1 writes x = 1 at time t1; later at time t2, session S2 reads x. Even

though the read can come arbitrarily later in real time, SC does not guarantee that it

will observe the write to x.
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S1 S2

Write (x=1)

Read (x)

Initially x = 0

t1

t2

time

Figure 2.4: Session S1 writes x = 1 at time t1. Later at time t2, session S2 reads x. SC permits

the read to return x = 0; lin mandates that S2 must read x = 1.

For this reason, SC is not composable [73]; plainly a system composed of SC

systems will not yield SC [106, 107]. For example, assume there are two SC KVSes

one that holds x and one that holds y. Also assume that S1 first writes x = 1, then writes

y = 1 and then S2 reads y = 1. If then S2 reads x there is no guarantee that it will be

able to observe the write to x from S1. Plainly, if there is an external communication

channel between S1 and S2, then SC cannot maintain the illusion that there is no

replication. For an in-depth analysis of ordering through real-time, we refer the reader

to [62].

2.2.3 Linearizability (lin)

Lin solves the above issue. Informally, lin mandates that each request appears to take

effect instantaneously at some point between its invocation and completion [74]. As

a result, lin gives the same guarantees as SC, with the addition that it also upholds

real time. This means that lin is composable, and thus able to hide replication in the

presence of external channels. For example, in Figure 2.4, lin mandates that S2 must

read x = 1.

Lin is considered the golden standard of strong consistency for distributed sys-

tems [97], where composition is often required [106]. Notably, the coherence protocols

deployed in shared memory multiprocessors are typically variants of the MSI/MESI

family of protocols [134] that also enforce lin [1, 134].

2.2.4 Release Consistency (RC)

We will discuss two variants of Release Consistency (RC) [64]: RCSC and RCLin. We

start the discussion with RCSC and then extend it to RCLin, which is the consistency

model that we will enforce in Kite(Chapter 4).
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Command Ordering

Relaxed Read / Write no ordering

Release Write
all⇒ release

release⇒ acquire

Acquire Read acquire⇒ all

RMW
all⇒ RMW

RMW⇒ all

Table 2.1: RCSC/RCLin API and orderings.

RCSC provides a sequentially consistent variant of RC, that has strong enough prim-

itives that lets one (provably) achieve well-known synchronization patterns, including

wait- and obstruction-free concurrent implementations of linearizable objects, as well

as mutual exclusion [25, 73].

Table 2.1 describes the RCSC API which contains five types of operations: 1) re-

laxed read (read), 2) relaxed write (write), 3) release write (release), 4) acquire read

(acquire) and 5) read-modify-write (RMW). The second column depicts the session

orderings enforced, where p→q means that operation p appears to take effect before

operation q. We informally describe these orderings below. In Section 4.4, we formal-

ize them axiomatically.

SC semantics (release / acquire→release / acquire). RCSC enforces SC among re-

leases and acquires; i.e. releases and acquires appear to take effect in session order.

Release barrier semantics (all→release). A release acts as a one-way barrier for all

prior accesses; i.e., a release takes effect only after writes and reads, before the release,

take effect. Informally this means that, by the time the release write becomes visible

to another session: (1) all writes that precede the release must be visible to that session

and (2) all reads that precede the release must have returned.

Acquire barrier semantics (acquire→all). An acquire acts as a one-way barrier for

subsequent accesses; i.e., reads and writes after the acquire, appear to take effect after

the acquire takes effect. Informally, when an acquire observes the value of a release

from another session: (1) a read that follows the acquire must be able to observe any

write that precedes the release and (2) a write that follows the acquire must not be able

to affect any read that precedes the release. Notably, an RMW acts as both an acquire



2.3. Failure Model 15

and a release.

Barrier invariant. The two types of barriers cooperate to enforce a single invariant:

when an acquire reads from a release, the accesses that follow the acquire appear to

take effect after the accesses before the release.

RCLin. In Kite we will enforce a stronger variant of RCSC, dubbed RCLin. RCLin

shares the same API with RCSC and enforces the same orderings (Table 4.1). The only

difference is that RCLin preserves lin among releases and acquires. For example, in

RCLin, if a release has completed in real time, then any subsequent acquire in real time

(from any session) is guaranteed to observe the release’s result; the same does not hold

for RCSC.

2.3 Failure Model

For the general-purpose KVS that we will target in this thesis, we will assume an asyn-

chronous model, with network and crash-stop failures. Under this model, there is no

need for synchronized clocks or bounds in message transmission delays. Individual

processes might fail by crashing, but do not operate in a Byzantine manner. Network

failures in either network links or messages may occur. This is the most strict non-

Byzantine failure model, typically assumed for general purpose systems [78, 101, 138]

such as the one we present in this thesis. Ensuring high availability under this model

entails that as long as a majority of servers (and their links) are alive, failures do

not cause a disruption in the system’s operation, i.e., client requests mapped to these

servers are executed normally. Notably, in Chapter 3, we will also examine protocols

that sacrifice availability, to better understand the trade-off between availability and

performance.

2.4 Replication protocols

A replicated KVS is comprised by 3-7 replicas, each of which stores all the objects in-

memory. Reliable replication protocols are deployed to maintain consistency among

the replicas. Plainly a replication protocol describes the actions that must be taken

in order to execute each operation (e.g., read or write). These actions ensure that the

system enforces the consistency model.

To ensure high availability under the failure model described above, a replication
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protocol must be asynchronous (aka nonblocking [73]). This means that the protocol

will not block as long as a majority of servers (and their links) are alive. For instance,

a protocol that requires that all replicas acknowledge a message, will block when one

of the replicas eventually fails. A common theme across asynchronous replication

protocols is the notion of quorums, which refers to a subset of the servers that hold

a replica. Throughout this thesis, the term quorum refers to any majority of repli-

cas. Asynchronous protocols can mandate that messages need to be seen by a quorum

(i.e., majority) of replicas, and thus the protocol will not block as long as a majority of

servers (and their links) are alive.

Notably, stronger consistency primitives require more costly actions [24, 73, 121].

Specifically, performing RMWs in our asynchronous model is equivalent to solv-

ing asynchronous consensus [73] and thus requires deploying a consensus protocol,

e.g., Paxos [101, 104]. Performing linearizable writes does not require solving con-

sensus [73] and thus a simpler protocol such as ABD [24, 122] suffices. However

systems often execute the same algorithm for both RMWs and writes [79]. Simi-

larly, implementing eventually consistent writes is simpler than linearizable writes, as

the replication protocol need only ensure that the writes will eventually become visi-

ble [36].

Multiple consistency-level (MCL) KVSes [3, 22, 44, 79, 110, 156, 166] try to

maximize performance by exposing this consistency / performance trade-off to the

programmer. For example, the programmer can use the “weak” flavour of a write (or

read), when it is sufficient for their purposes, reaping the performance benefits. Con-

versely, when strong consistency is required, they can resort to the “strong” flavour of

a write (or read), paying the cost.

In Chapter 3, we will discuss the various classes of strongly-consistent replication

protocols. In Chapter 4, we will revisit MCL KVSes, contrasting them to our approach.



Chapter 3

The Impact of Modern Hardware on

Strongly-Consistent Replication

Protocols

3.1 Introduction

In this chapter, we take the first step towards the design of the replication layer of

general-purpose KVSes, by characterizing the design space of strongly-consistent repli-

cation protocols and uncovering the best practices for protocol design.

This study is necessitated by the advent of modern hardware. As discussed in Sec-

tion 2.1.2, over the last 10-15 years, the server-grade hardware landscape has changed

drastically [31, 48, 146]. Servers with two or four cores per chip have given way to

many-core chips with tens of cores, kernel-based 1 Gbps networking has given way

to user-level networking with 10s or 100s of Gbps and finally, main memory has been

scaled to 100s of GBs with 10s of Gbps worth of bandwidth. These advances challenge

the conventional wisdom on protocol design in two ways.

Firstly, to benefit from the significant increase in hardware-level parallelism across

compute, network, and memory, protocols must be multi-threaded. Indeed, a single-

threaded protocol not only fails to utilize the available cores in a many-core system,

but also the available network and memory bandwidth [87, 114].

Problematically, traditional protocol design has seldom considered threading; rather

it has typically assumed that each server consists of a single serial process. For in-

stance, a leader-based protocol specification typically assumes and often relies on the

fact that the leader executes serially. Unsurprisingly, designing protocols without con-

17
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sidering threading often results in non-scalable protocols.

The second aspect of protocol design challenged by modern hardware is the need

(or the lack thereof) for optimizing around the millisecond I/O speed. Specifically,

protocols have traditionally been designed to: 1) reduce the number of messages per

request and 2) avoid random memory look-ups which could result in disk accesses.

Achieving these properties at the cost of thread-scalability or load balancing has been

considered to be an acceptable trade-off. The reasoning is simple: in yesterday’s world,

either of these actions costs milliseconds and can therefore skyrocket the request’s

latency, resulting in user dissatisfaction and violations of the service-level agreements.

This is no longer the case, however. The hefty increase in main memory capac-

ity has catalyzed the advent of in-memory databases [114, 116]; randomly accessing

a memory object is now a nanosecond operation. Similarly, with modern, user-space

and hardware-offloaded networking (e.g., RDMA), sending a message is a microsec-

ond action [48]. Therefore, in the modern era, the protocol designer no longer needs

to sacrifice properties such as thread-scalability or load balance in order to decrease

latency.

In fact, in the modern era we argue that the opposite is true: in order to optimize

latency, one should actually prioritize thread-scalability and load balance. Here is

why. With networking and memory accounting for a few microseconds, the request

latency does not typically exceed a few tens of microseconds on a lightly loaded sys-

tem. Therefore, to ensure microsecond latency, we need only ensure that the system is

not overloaded. This calls for high-throughput protocols as they are less likely to be

overloaded by the target throughput. To maximize throughput, thread-scalability and

load balance should be prioritized over traditional metrics such as number of messages

per request. Our evaluation corroborates this hypothesis (§ 3.5).

Research questions. Thus far, we have argued that modern hardware has challenged

conventional wisdom on protocol performance. We thus raise two research questions:

how do protocols proposed in the literature perform on modern hardware? If one

wishes to design a new protocol, what are the best practices one should adhere to?

In order to provide the answers we set out to evaluate and compare strongly-

consistent replication protocols deployed on modern hardware over a state-of-the-art

kvs-structure (i.e., MICA [116]). Below we first analyze the challenges in performing

this study, we describe how we tackle them and finally we list the contributions of this

work.
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A taxonomy for protocol selection (§3.2). Firstly, it is neither feasible nor tractable

to meaningfully compare every single proposed protocol. We must therefore select

a few representative protocols that capture the design space, allowing us to extrap-

olate their results to the rest. To this end, we first develop a taxonomy of existing

protocols, classifying them into four classes based on their operational patterns (Sec-

tion 3.2). To understand the performance of the different classes of protocols, we

carefully select ten protocols for analysis: ZAB [79], Multi-Paxos [104], CHT and

multi-leader CHT [42], CRAQ [154], Derecho [82], Classic Paxos (CP) [101], All-

Aboard Paxos [77], ABD [122] and Hermes [91].

Odyssey: building protocols in the modern era (§3.3). The second challenge is fa-

cilitating an apples-to-apples comparison that extracts maximum performance from

each of these protocols on modern hardware. To overcome this challenge, we present

Odyssey, a framework tailored towards protocol implementation for multi-threaded,

RDMA-enabled, in-memory, replicated KVSes. Specifically, Odyssey provides the

functionality to perform all the non-protocol-specific tasks, such as initializing and

connecting the servers, managing the kvs-structure and sending/receiving RDMA mes-

sages. These tasks can account for up to 90% of the codebase for the replication pro-

tocol, requiring domain-specific knowledge in networking and the kvs-structure. With

these tasks out of the way, the developer can focus on coding solely the protocol-

specific components, significantly accelerating the development process, while also

producing more reliable code. We implement all ten protocols on top of Odyssey.

Comparison results (§ 3.5). We answer the questions posed earlier by analyzing the

results of our comparison of ten strongly-consistent replication protocols implemented

over Odyssey. Firstly, we characterize the performance capabilities of each class of

protocols along with its possible optimizations. This characterization allows us to

provide an informed recommendation to those who seek to deploy an existing protocol,

based on their needs. Secondly, the characterization reveals the relative importance

and performance impact of properties such as thread-scalability, load balance, and

the work-per-request ratio (i.e., the total cpu, network and memory resources required

to complete a single request). By analyzing the effect of modern hardware on how

such properties impact performance, we hope to inform the decisions of the protocol

designer and steer the research community towards a more hardware-aware discussion.

Contributions. Summarizing, this chapter presents the following contributions.

• We present a taxonomy of strongly-consistent replication protocols based on
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their operational patterns (§3.2).

• We introduce Odyssey, a framework that allows developers to easily design, mea-

sure and deploy replication protocols over modern hardware (§3.3).

• To the best of our knowledge, we present the first ever implementation and eval-

uation of All-Aboard Paxos, CHT and CHT-multi-leader.

• Using Odyssey, we implement and evaluate ten protocols that span the design

space of strongly-consistent protocols, presenting the first apples-to-apples com-

parison over modern hardware. Our evaluation provides a complete characteri-

zation of the replication protocol design space and reveals the impact of modern

hardware on the performance of replication protocols (§3.5).

3.2 A Taxonomy of Replication Protocols

This section serves two purposes. First, we present a taxonomy of strongly-consistent

replication protocols. The taxonomy will not only inform our choice of protocols to

implement and evaluate, but will also enable us to generalize the results of each pro-

tocol to its respective class. Second, we describe the operation of various protocols,

providing the background material necessary for the rest of this chapter. Before diving

into the taxonomy we first offer four remarks on the protocols and the corresponding

jargon.

Remarks. Firstly, note that a lot of the protocols that we discuss can also execute

transactions. However, this work will view them solely through the lens of the read,

write, RMWAPI, explaining how each protocol performs a read and a write (or RMW)

to keys stored in the replicated KVS.

Secondly, recall that the problem of performing an RMW in an environment where

machines can fail and network/processing delays are unbounded is equivalent to asyn-

chronous consensus [73]. This is why some of the protocols we are studying are known

under the umbrella of “consensus protocols”. However, in this work we cast a wider

net, investigating the sensitivity of performance to reducing availability. For that rea-

son we refer to the protocols discussed in this chapter with the general term “strongly-

consistent replication protocols”.
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Figure 3.1: Leader-based protocols steer all writes to the leader node (L), which typically

propagates them to the follower nodes (F1-F3). In decentralized protocols, every node (N1-

N4) is responsible for coordinating its own writes. Total order protocols create a total order of

all writes and mandate that all nodes must execute writes in that total order. For example, writes

W1,W2,W3,W4 must be applied in this order even if they operate on different keys. Conversely,

per-key order protocols need only agree on the order of writes to the same key.

Third, most of the protocols we will investigate use the same algorithm to perform

writes and RMWs, while just one protocol (ABD) can do only writes but not RMWs.

For this reason, from now on we will only discuss reads and writes, noting that writes

capture RMWs (with the exception of ABD).

Finally, note that throughout this chapter and this thesis, when we refer to a “local

read”, we refer to an operation that is performed by a machine that knows it is in the

configuration and hence reads from its local kvs-structure.
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Total order Per key order

Leader-

based

Multi-Paxos [104], ZAB [79, 142],

VR [137], APUS [163],

DARE [140], Raft [138],

Fast Paxos [103]

CHT, CHT-multi-ldr [42],

FGSMR [117], WPaxos [15],

Primary-backup [19], CR [158],

CRAQ [154],

Decentralized

(Leaderless)

Mencius [125], Derecho [82],

AllConcur [141]

CP [101], RMW-Paxos[148],

CASPaxos[143], Gryff [37],

Generalized Paxos [102], EPaxos [133],

Atlas [52], All-aboard Paxos [77],

ABD [122], Hermes [91]

Table 3.1: Taxonomy (implemented protocols are in bold)

3.2.1 Taxonomy

Our taxonomy is split into four quadrants as shown in Figure 3.1 (and Table 3.1) based

on two operational patterns: 1) leader-based (L) vs. decentralized (D) and 2) total

order (TO) vs. per-key order (PKO). Consequently, there are four resulting classes of

protocols:

1. LTO: leader-based total order

2. LPKO: leader-based per-key order

3. DTO: decentralized total order

4. DPKO: decentralized per-key order

Total order implies that protocols create a total order of all writes across all keys

and apply them to the kvs-structure in that order. In contrast, per-key order mandates

that protocols only enforce a total order of writes at a per-key basis. Note that this does

not affect the consistency guarantees; in both cases, protocols can offer lin. Leader-

based protocols utilize a single node (i.e., a leader) to enforce the ordering of the writes,

while decentralized protocols achieve the same effect in a distributed manner.

Why choose these two axes to categorize protocols? We hypothesize that from a

performance perspective, protocols must optimize for three metrics: 1) thread-scalability:

the protocol’s ability to scale with more threads, 2) load-balance: whether the work
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required to complete a request is evenly distributed among all nodes and 3) the work-

per-request ratio: the total cpu, network and memory resources required to complete a

single request.

The classification is derived from the above three metrics. Specifically, total order

protocols—with or without a leader—struggle to achieve thread-scalability because

applying writes in order requires coordination between the threads. Leader-based pro-

tocols struggle to achieve load balance as the leader tends to carry out most of the work

required to execute a write. Both techniques (leader and total order) help reduce the

work-per-request ratio as they provide an easy way to order writes. Conversely, proto-

cols that are both per-key and leaderless tend to require a higher work-per-request ratio

because the protocols must do additional work to order writes in a distributed manner.

We will substantiate these claims in our evaluation section (§3.5).

3.2.2 Leader-based & Total Order (LTO)

Protocols such as ZAB [79], Multi-Paxos [104] and Raft [138] serialize all writes at

the leader node, creating the total order. The leader executes the writes by proposing

them to the rest of the nodes (dubbed followers), typically in two broadcast rounds:

a propose round to which followers respond with an acknowledgement (ack), and a

commit round. All nodes must apply committed writes in their total order.

Reads. A write is guaranteed to propagate to only a majority of nodes. The leader is the

only node that is guaranteed to be in that majority, and thus the only node guaranteed

to know of the latest committed write for any key. As such, the leader can always read

locally. Followers must send their reads to the leader, querying it for the latest value.

There are two possible relaxations that allow local reads in follower nodes, too.

The first relaxation is to simply forego linearizability, conceding that reads may not

return the latest write. This is tolerable for LTO protocols, because if writes are totally

ordered, this relaxation downgrades consistency guarantees only mildly to Sequential

Consistency [107]. ZAB subscribes to this practice.

The second relaxation that allows followers to read locally is to ensure that every

write reaches all followers. Note that there is a downside in requiring that all writes

propagate to all nodes: even if one node fails, all writes block. We elaborate in Sec-

tion 3.2.6.

Choices. To represent LTO, we implement ZAB and Multi-Paxos (MP), capturing the

difference between local reads (with relaxed consistency) and linearizable reads that
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must be sent to the leader node.

3.2.3 Leader-based & Per-key Order (LPKO)

Protocols in this class use the leader node to only serialize writes to the same key.

Specifically, all writes are steered to the leader node, which simply ensures that writes

to the same key are applied in the same order by all replicas. A typical example of

this class is the CHT [42] protocol, where the leader executes writes in two rounds as

described in the total order class. There are two possible optimizations protocols can

employ.

The first is exemplified by Chain Replication (CR) [158]. In CR, the leader does not

broadcast the writes to the followers; rather the nodes are organized in a chain, through

which writes propagate from the head of the chain to its tail. The head node acts as

the leader in that all writes have to be steered to it so that it serializes them. In our

evaluation, we will see how this approach significantly—but not entirely—alleviates

the load balance problem.

The second optimization also tackles load balance, by denoting that all nodes are

leaders for a subset of the keys. For example, for a 5-node deployment the key space is

partitioned five ways, where each node is denoted leader for only one of the partitions.

Notably, this is possible in LPKO—but not LTO—because the leader need not enforce

an order across all writes.

Reads. LPKO protocols can execute lin reads in the same manner as LTO protocols.

When writes propagate to a majority of nodes, reads have to be propagated to the

leader. When writes are guaranteed to propagate to all followers, reads can execute

locally in all nodes. CHT and CRAQ [154], an optimized variant of CR, both subscribe

to this approach.

Finally, note that the option to propagate writes to a majority of nodes but execute

reads locally by downgrading consistency to SC (discussed for LTO) is not available

for per-key order protocols. Reading locally in this case would result in very weak

guarantees (i.e., Eventual Consistency [161]).

Choices. To represent LPKO, we implement three protocols: CHT, CRAQ and a vari-

ant of CHT with multiple leaders, dubbed CHT-multi-ldr. CHT represents the typical

LPKO protocol, CRAQ captures the CR optimization for load balancing writes and

finally, CHT-multi-ldr captures the optimization of denoting all nodes as leaders of a

partition of the key space. All three protocols read locally.
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3.2.4 Decentralized Total Order (DTO)

In DTO protocols, the total order of writes is not created in a central location. Rather,

there is typically a predetermined static allocation of write-ids to nodes. For example,

all nodes know that the writes 0 to N−1 will be proposed and coordinated by node-0,

the next N writes (i.e., N to 2N−1) will be proposed by node-1 and so on. Therefore,

each node can calculate the place of each write in the total order based on its own node-

id, without synchronizing with any other node. Then, the node broadcasts its writes

along with their place in the total order. Typically a commit message is broadcast after

gathering acks from a majority of the nodes. Crucially, all nodes must apply the writes

in the prescribed total order. Derecho [82], AllConcur [141] and Mencius [125], all

belong to the DTO class.

Reads. Reads can be executed by allocating slots in the total order, similarly to writes.

Local reads are also possible, either by downgrading consistency guarantees to SC

(similarly to LTO), or by enforcing that all writes will propagate to all nodes.

Choices. To represent DTO, we implement and evaluate Derecho. In order to get the

upper bound of the DTO class, we implement the Derecho variant that executes reads

locally, downgrading consistency guarantees to SC.

3.2.5 Decentralized Per-key Order (DPKO)

In the fourth and final quadrant, DPKO protocols agree on a per-key order of writes

in a distributed manner. There is no central leader—rather any node can propose and

coordinate a write. The most prominent example is Classic Paxos (CP) [101]. Tra-

ditionally, CP has been regarded simply as a way to perform leader election so that

Multi-Paxos can start executing. However, recent proposals [61, 143, 148] have used

CP to reach consensus on which node should be the next to perform a write at a per

key basis.

Notably, CP extracts a steep price: it requires three broadcast rounds to complete

(propose, accept and commit [77]), each of which contains considerably more meta-

data than any other protocol we have discussed, while responding to a propose or

accept is also very complicated, as there are various possible responses, depending on

the state of other conflicting ongoing writes. Finally, depending on conflicts, CP may

have to retry an unbounded number of times [55].

The source of CP’s overhead stems from the combination of three constrains: 1)

conflicting writes may be concurrently executing at all times and 2) it is impossible
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to guarantee that a message will always be delivered to all nodes and 3) writes are

conditional (i.e., RMWs). Relaxing any of the constraints will significantly simplify

the problem. Consequently, there are three approaches to optimize CP, one for each

constraint. The first approach is exemplified by protocols such as EPaxos [133], At-

las [52] and All-aboard Paxos [77], which provide a fast path, where consensus can be

achieved after two broadcast rounds (accept and commit), in the absence of conflicts,

using CP as the fallback option when conflicts do occur.

The second approach is presented by Hermes [91], which, similarly to CR and

CHT, enforces that a message will always be delivered to all nodes. With this guar-

antee, performing a write can be done in two lightweight broadcast rounds which are

roughly equivalent to accept and commit.

Finally, the third approach downgrades the API, offering plain writes instead of

conditional writes. Multi-writer ABD [122] is a variant of the ABD protocol [26]

that exemplifies this approach. From now on, we refer to multi-writer ABD simply

as ABD. A write in ABD requires two broadcast rounds that must reach a majority of

nodes.

Reads. In DPKO protocols that do not guarantee that a write reaches all nodes, there

is no master copy to read from. Therefore, to get the most recently committed write,

a read must consult a majority of nodes [43]. The reads should then perform a second

round to ensure that the write is committed to a majority of nodes, so that subsequent

reads can also observe it. We refer to this as the ABD-read as it was first proposed in

the original ABD protocol [26]. Notably, if writes are guaranteed to reach all nodes,

reads can be performed locally.

Choices. To represent DPKO we implement and evaluate four protocols: CP, All-

aboard, Hermes and ABD. CP will provide a baseline. All-aboard shows the limit of

CP while maintaining its availability guarantees. Hermes will show us the performance

gains possible when writes reach all nodes. ABD will showcase the performance dif-

ference between conditional and regular writes. In CP, All-aboard and ABD, we use

ABD-reads to perform reads, because in all three of these protocols writes are not

guaranteed to reach all nodes.

Notably, instead of All-aboard, we could have selected EPaxos [133] (or its most

recent variant, Atlas [52]). EPaxos requires that nodes respond to accept messages with

recent conflicting commands. This requires memory, compute and network resources

to store, retrieve, reply and transmit an unbounded number of conflicting writes. In
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Availability guarantees

CP, ABD, All-aboard Always available

ZAB, MP
Unavailable for the duration of a

predefined time-out after the leader node fails

Hermes, CRAQ, CHT,

CHT-multi-ldr, Derecho

Unavailable for the duration of a

predefined time-out after any node fails

Table 3.2: A summary of the availability guarantees of the ten protocols, with up to f failures

(with 2 f +1 nodes).

contrast, All-aboard is a zero-cost optimization. Specifically, All-aboard leverages the

Flexible Paxos [78] theorem to shave off the first round (propose) and significantly

reduce the size of the commit round, without incurring a counterweight cost. The

complete specification of our All-aboard implementation over CP can be found in [59].

3.2.6 The Impact on Availability

In this section, we discuss the implications of protocol design choices on the availabil-

ity guarantees.

CP, All-aboard and ABD are the only protocols that offer high availability under

the failure model discussed in Section 2.3. Specifically, they assume the possibility

of: 1) non-Byzantine machine and network failures; and 2) unbounded delays in both

processing and networking. Under these assumptions, as long as N/2+1 nodes remain

alive, responsive and connected, these three protocols will operate without interruption,

i.e., they will remain available. The rest of the protocols that we have selected make

design choices that downgrade these availability guarantees.

Leader-based protocols (ZAB, MP, CRAQ, CHT and CHT-multi-ldr) will block

if the leader becomes unresponsive. Similarly, assuming that writes always reach all

nodes (as in Hermes, CRAQ, CHT, and CHT-multi-ldr) results in blocking if any node

becomes unresponsive. Note that assuming that writes reach all nodes is a prerequisite

for linearizable local reads. Therefore, lin local reads can only be implemented at

the expense of availability. Finally, Derecho assumes that every node makes use of

their pre-allocated slots in the total order in a timely manner. If any node is slow to

broadcast new writes, then all nodes will block. Table 3.2 provides a brief summary of
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the availability guarantees of the ten protocols.

In all the above cases, a failure causes blocking for the duration of a predefined

time-out. Expending this time-out will trigger a recovery action (e.g., leader election,

reconfiguration etc.). Once recovery is complete, operation can resume. The unavail-

ability period is the sum of the length of the time-out plus the latency of the recovery

action.

This work provides a detailed performance analysis of replication protocols with-

out delving into the nuances of availability. However, having pointed to the choices

that come at the expense of availability, we enable the operator to select (or design) the

protocol that best fits their needs.

3.3 Odyssey

In this section, we describe Odyssey, a framework that allows developers to easily

design, measure and deploy replication protocols over modern hardware. Specifically,

Odyssey contains libraries to perform, among other things, the following: create and

pin software threads, initialize and interface with the kvs-structure, initialize RDMA

data structures, exchange RDMA metadata to connect the servers, send and receive

RDMA messages, initialize and use the RDMA multicast primitive, detect failures and

maintain the configuration, specify and implement the read/write API (or create traces

for benchmarking) and finally measure the performance of the system.

All ten of our selected protocols are implemented over Odyssey. Therefore, de-

scribing Odyssey serves a dual purpose: presenting implementation details of our eval-

uated protocols and describing how Odyssey can be used by the community to design

and deploy new protocols.

In the rest of this section we first describe the utility of Odyssey (§3.3.1), and then

focus on its basic components: the threading model (§3.3.2), the kvs-structure layer

(§3.3.3), the networking layer (§3.3.4) and the API (§3.3.5).

3.3.1 Utility of Odyssey

The utility of Odyssey is twofold. Firstly, for the purposes of this thesis, it allows us

to compare strongly-consistent replication protocols over modern hardware. Secondly,

once open-sourced, Odyssey can be used to develop new (or old) protocols over modern

hardware. Below, we elaborate on why Odyssey is necessary to achieve either of these
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goals.

Protocol comparison. Odyssey facilitates an apples-to-apples comparison between

strongly-consistent replication protocols over modern hardware: all our protocols use

the same threading model, underlying kvs-structure and networking patterns and op-

timizations. However, it is not enough for the comparison to be fair; it must also be

meaningful. For that, protocols must be able to stress modern hardware to its lim-

its. Only then will the protocol inefficiencies be exposed. For instance, Figure 3.4a,

orders our ten protocols by their single-threaded performance; this order changes dras-

tically when multi-threading them in Figure 3.4b. This is because multi-threading

stresses the hardware, which in turn exposes protocol pathologies. The need to stress

the hardware necessitates a framework, such as Odyssey, that targets multi-threaded,

RDMA-enabled, in-memory KVSes.

Development of new protocols. The second purpose of Odyssey is to accelerate the

development and deployment of replication protocols over modern hardware. Note

that in most of our protocols 80 to 90% of the codebase is devoted to tasks such as

setting up and using the kvs-structure and the RDMA networking. The challenge is

that, while orthogonal to protocol design, these tasks require intimate domain-specific

knowledge.

To get a taste of what this knowledge entails, let us look at a specific example of a

commonly occurring error when using RDMA. Assume that an RDMA message that

appears to have been transmitted is never received. Also assume the developer is wise

enough to check the hardware counters and detects that req cqe error has been incre-

mented. In that case, the developer must know from experience that the most likely

cause for this error is attempting to send a message from a memory location that has

not been registered with the NIC. Absent that intimate knowledge of the RDMA uni-

verse, the developer would have to make due with the manual’s enigmatic explanation,

that a “completion queue event has completed with an error” [153].

Odyssey frees the developer from all that cumbersome complexity allowing them

to focus solely on the protocol. Under the hood, Odyssey uses best practices and opti-

mizations from different domains to maximize performance.

To get a better sense of Odyssey’s utility, let us consider a concrete example in the

form of Hermes over Odyssey. Was development accelerated? It took one developer

less than 2 working days to develop and test our Odyssey-based Hermes. Did Odyssey

practices help performance? Our Odyssey-based Hermes enjoys a 20% increase in
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write throughput, compared to the open-sourced version. We attribute the increase to

Odyssey’s smart messages (explained in Section 3.3.4.3).

3.3.2 Odyssey Threading model

Multi-threading is a necessary step to harness the inherent parallelism in modern hard-

ware. Here we describe how it is implemented in Odyssey.

Odyssey sets up a number of threads called workers and a number of threads called

clients. Clients establish connections with the workers through sessions. Each session

represents an entity (e.g., an external client, or an application thread), which issues

requests (reads and writes) to the system. Each worker is typically responsible for a

number of sessions. Workers are independent from each other: a worker completes

each request in isolation and reports completion to the corresponding client. The order

in which requests appear within a session constitutes the session order. Requests are

always executed in session order.

This execution model allows Odyssey to uncover all available parallelism across

unrelated requests, i.e., request-level parallelism. This is necessary in order to take

advantage of the ample parallelism in today’s modern hardware. Specifically, an

Odyssey-based protocol may be working on thousands of request at any given moment,

by uncovering the thread-level parallelism across worker threads, and the session-level

parallelism within a worker thread (as every worker is typically responsible for multi-

ple sessions).

Developer effort. Threads are spawned and pinned transparently to the developer. The

developer specifies how many workers and clients are required and provides details on

the system’s resources, so Odyssey knows how to pin the threads.

3.3.3 Odyssey Key-Value Data Structure (kvs-structure)

Odyssey sets up an in-memory kvs-structure in each node, leveraging the memory ca-

pabilities of modern hardware. As discussed in Section 2.1, the kvs-structure is largely

based on MICA [116], (as found in [89]), a state-of-the-art in-memory kvs-structure

tailored for high performance. We enhance MICA with sequence locks (seqlocks) [98]

to allow for concurrency control. Seqlocks allow reads to execute in a lock-free man-

ner; writers must spin on the lock variable.

The challenge in providing a kvs-structure as a library is that different protocols

may have different requirements from the metadata stored along with each key. Some
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protocols may simply wish to read/write the value, but other protocols may require

to read/write additional metadata. For example, when executing CP, upon receiving a

propose message we may need to transition the state of the key to proposed.

Developer effort. Odyssey allows the developer to specify their own data structure to

be stored in the value of a key-value pair. Furthermore, the developer must also specify

the necessary handlers to process application-specific requests to the kvs-structure.

These handlers can be registered with Odyssey to be called on receiving a message.

3.3.4 Odyssey Networking

The third core component of Odyssey is its networking layer which allows it to leverage

modern RDMA-enabled networks. In this section, we first provide an overview of the

networking decisions and the effort required by the developer to use the Odyssey net-

working library (§3.3.4.1). Then we look at generic optimizations that are enabled by

default (§3.3.4.2), and finally we describe two useful pieces of functionality that the

developer can leverage: smart messages (§3.3.4.3) and hardware multicast (§3.3.4.4).

3.3.4.1 Networking Overview

Odyssey adopts the Remote Procedure Call (RPC) paradigm over UD Sends. Re-

searchers have extensively proven that this paradigm comprises the most efficient and

practical design point for modern RDMA-capable networks [86, 87, 88, 89]. Below

we provide an overview of how the networking layer is initialized and how it can be

used to exchange messages.

Developer effort – initialization. The developer must specify the number and the

nature of the logical message flows they require. In RDMA parlance each flow corre-

sponds to one queue pair (QP), i.e., a send and a receive queue. For instance, consider

Hermes where a write requires two broadcast rounds: invalidations (invs) and valida-

tions (vals). Each worker in each node sets up three QPs: 1) to send and receive invs,

2) to send and receive acks (for the invs) and 3) to send and receive vals. Splitting

the communication in message flows is the responsibility of the developer. To create

the QP for each message flow, the developer simply calls a Odyssey function, passing

details about the nature of the QP.

Developer effort – send and receive. For each QP, Odyssey maintains a send-FIFO

and a receive-FIFO. Sending requires that the developer first inserts messages in the
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send-FIFO via an Odyssey insert function; later they can call a send function to trigger

the sending of all inserted messages. To receive messages, the developer need only

call an Odyssey function that polls the receive-FIFO. Notably, the developer can spec-

ify and register handlers to be called when calling any one of the Odyssey functions.

Therefore, the Odyssey polling function will deliver the incoming messages, if any, to

the developer-specified handler.

3.3.4.2 Optimizations

Let us now overview the networking optimizations that are employed by default in

Odyssey. Firstly, we limit each worker to communicate with only a single worker

in every remote machine. This restriction has been shown to substantially increase

performance by reducing the pressure on NIC’s hardware (caches and TLB) caused by

networking metadata [58].

Furthermore, Odyssey will always batch messages in the same network packet

when given the opportunity. Batching more than doubles the performance when mes-

sages are small [58] by amortizing all costs associated with sending a single packet

(i.e., the packet header, DMA transactions, computation in the CPU, NIC and switch

etc.).

Finally, we carefully implement low-level, well-established RDMA practices such

as doorbell batching, inlining and batched selective signaling. We refer the reader

to [30, 87] for more details on these optimizations.

3.3.4.3 Smart Messages

In this section, we describe Odyssey’s smart messages, i.e., an implementation of ac-

knowledgements (dubbed smart-acks) and commit messages (dubbed smart-coms) that

can be readily used by the developer.

Smart-acks. A smart-ack acknowledges receiving multiple messages with a fixed-

size payload as long as the received messages have consecutive ids. Specifically, a

smart-ack specifies 1) the first message-id it acks and 2) the number of consecutive

message-ids it acks.

We call them “smart” because instead of sending an ack message for every received

message, they batch multiple acks while keeping the payload fixed. The batching is

opportunistic, that is, it never waits to fill a quota. In practice however, smart-acks

always carry a batch because batching is used in all messages, and thus there is always
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a batch of messages to be acked.

Smart-coms. The idea is the same: smart-coms commit multiple writes with a fixed

payload, as long as the writes have consecutive ids. Notably, smart-coms and smart-

acks have great synergy, as commits are often sent after receiving acks.

Developer effort. The developer needs to make sure that messages are tagged with

monotonically increasing ids. In return, they avoid the effort of implementing acks

and commits. Instead, they need only call the Odyssey functions to create and send the

smart messages.

We have found smart messages to be extremely useful: we have smart-acks in all

ten of our protocols, and smart-coms in six of them. Besides boosting performance,

smart messages significantly accelerate the time to build a protocol.

3.3.4.4 Hardware Multicast

Most replication protocols require broadcasting messages in order to communicate

a new write to all replicas. Broadcasts are implemented in Odyssey through unicasts.

However, Infiniband switches can perform a hardware-assisted multicast [6], where the

sender transmits a single packet and the switch then replicates it and propagates it to all

recipients. A packet always specifies the multicast-group-id that it must be transmitted

to. To receive a multicast, nodes must register in the corresponding multicast group in

the switch.

Odyssey contains a multicast library that will be used under the hood, if the de-

veloper specifies that a QP should use the multicast primitive. In Section 3.5, we

investigate the types of protocols that can benefit from the hardware multicast. As far

as we know, Odyssey is the first framework to offer access to the RDMA multicast.

3.3.5 Odyssey API.

The last component of Odyssey that we will discuss is its application programming

interface (API). Clients call the Odyssey API to issue requests, without any knowledge

of the protocol that is implemented under the hood. The API relies on the abstraction

of sessions. A client is assigned a session, which it uses on every call to the Odyssey

API. Odyssey maintains one queue per session, which we call session reorder buffer

(ROB) 1. Client requests are inserted in the corresponding session ROB, maintaining

1The operation of our session ROBs resembles that of the ROB structures found at the heart of
microprocessors
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Figure 3.2: An Odyssey machine is composed of worker and client threads, that interface

through the session ROBs.

the order in which they were issued by the client. This order constitutes the session

order. Under the hood, Odyssey statically maps sessions to workers. The worker that

is responsible for a session picks up its requests and completes them. Figure 3.2 illus-

trates this interaction. Upon completing a request, the worker marks the corresponding

ROB entry as completed and writes back the result (in case of a read or RMW). The

client learns of the request completion by inspecting the ROB entry. The time at which

the client inspects the ROB entry depends on which flavour of the API was used. Let

us elaborate.

The Odyssey API offers relaxed reads/writes, release-writes, acquire-reads, a Fetch-

&-Add (FAA), and two variants of Compare-&-Swap (CAS): a weak variant that

can complete locally if the comparison fails locally, and a strong variant that always

checks remote replicas. The Odyssey API includes an asynchronous (async) and a

synchronous (sync) function call for every request (similarly to Zookeeper [79]).

Synchronous API . A sync call issues the request and then blocks polling for the

request’s completion. We provide here the function call that issues a sync relaxed

read:

sync_read(key_id , val_len , *value_ptr , session_id);

The programmer provides the key to be read (key id), the size of the value in bytes

(val len), a pointer where the value should be copied (∗read value ptr) and the session
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id (session id). The call returns an integer, which, ifnegative, maps to an error code.

Sync calls simplify programming, but are not very efficient, as the client may need to

block for several microseconds waiting for a request to complete.

Async API . An async call returns immediately before the request has completed. The

client can call a polling function to find out if the request has been completed. As an

example, we provide here the async relaxed read call:

async_read(key_id , val_len , *value_ptr , session_id);

The call returns an integer, which, if negative, maps to an error code; otherwise, the

returned integer denotes the request id that can be used by the client to poll for the

request’s completion. Odyssey provides a range of polling functions, that typically

require a session id and a request id as arguments.

Batched Asynchronous Programming . Despite its performance benefits, the asyn-

chronous API is admittedly quite cumbersome to program with. For that reason, we

make the following simplification: completed requests can only be polled in session

order, irrespective of the order in which the worker completes them. This enables the

client thread to issue a batch of requests and then at a later time, poll only for the last

request issued. If the last request is successfully polled, it guarantees that all preceding

requests have been completed. We found this pattern very natural in porting code to

Odyssey.

Multiple sessions per client thread. A client thread can use multiple sessions to im-

prove performance: enabling thread-level parallelism across the workers, and session-

level parallelism within one worker thread. Programmers can leverage this feature

to parallelize their applications, by allocating parallelizable tasks to different ses-

sions. We leverage this capability when porting lock-free data structures to Odyssey

for Kite [61], in order to allow clients threads to work on multiple distinct operations

concurrently, through different sessions.

Session ROB. Session ROBs constitute the communication medium between client

and worker threads. There can be thousands of sessions ROBs (one per session), where

each session maps to exactly one client and one worker thread. Therefore, any given

session ROB can only be accessed by one worker and one client. We focus on one slot

of a single session ROB. The slot’s fields are illustrated in Figure 3.3a. The client fills

the fields of the slot to issue a request, and the worker uses the fields to complete the

request. For instance, on a CAS request the worker writes the result in the rmw result

field. If the CAS is unsuccessful, the worker also writes the read value in the address
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Figure 3.3: The fields of one slot of one session ROB, and the FSM of the state field.

pointed to by the read value ptr field.

Request FSM. An ROB slot contains a state variable, which is used to facilitate the

synchronization between worker and client. The state variable works as a Finite State

Machine (FSM) (Figure 3.3b), transitioning between four possible states, denoting

who can access the slot. A client issues a request to the slot only if the state is Invalid;

transitioning the state to Active, which implicitly passes the ownership of the slot to

the worker thread. The worker will transition the slot to In-progress when it begins

executing it and later to Completed when it completes it.

3.4 Methodology

Our experiments use a uniform read/write trace, which is created on each run and

is kept in-memory. The kvs-structure consists of one million key-value pairs, which

are replicated in all nodes. We use keys and values of 8 and 32 bytes, respectively.

Requests are issued from the client threads over the Odyssey API. The hardware in-
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frastructure used for the experiments is detailed in Section 2.1.3.

3.5 Evaluation

In this section, we analyze the performance of the ten protocols that we have imple-

mented over Odyssey. We start the discussion by providing a high-level overview of the

key insights of this evaluation (§3.5.1). Then we individually analyze the performance

of each class of protocols (§3.5.2 -§3.5.5) and finally, we elaborate on the performance

impact of the hardware multicast primitive (§3.5.5).

3.5.1 Overview

First, we briefly describe Figure 3.4 and Table 3.3 and then analyze our key insights

and provide general directives and recommendations.

Figure 3.4. Figure 3.4 shows the throughput of all protocols in million requests per

second (M.reqs/s), ordering the protocols in ascending throughput order. Specifi-

cally, Figure 3.4a and 3.4b show the write throughput of the protocols when they

are single-threaded and multi-threaded (default scenario), respectively. Finally, Fig-

ure 3.4c shows the throughput (multi-threaded), with 95% reads.

Note the following three remarks for Figure 3.4. Firstly, both the x-axis and y-

axis are different in all three graphs. Crucially, protocols in the x-axis are ordered in

ascending throughput order. Secondly, MP and ZAB are the same protocol in the write-

only workload, i.e., in Figure 3.4a and 3.4b, because they only differ in the execution of

reads. Third and final, note that there is a protocol called CHT-mcast: this is the CHT

protocol with the hardware multicast enabled. We show its performance separately

because it performs significantly better than CHT. Enabling the multicast in the rest of

the protocols has a very small impact.

Number of threads. Note that in Figure 3.4b we fine-tune the parameters of each

protocol to maximize its throughput. As a result not all protocols utilize the same

number of worker threads (recall that our servers have 40 hardware threads). In Fig-

ure 3.4b ZAB, MP, Derecho and CHT use 10 threads, CP uses 20 threads, All-aboard

and CHT-multi-ldr use 30 threads and ABD, CRAQ, Hermes and CHT-mcast use 37

threads.

Is it then not unfair that some protocols get more resources (e.g., threads) than

others? Crucially, note that all protocols have the same resources available, but some
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Figure 3.4: Throughput comparison of all protocols in M.reqs/s. Note that both the x-axes and
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of the protocols cannot utilize only a portion of them. In fact it is the very goal of this

chapter, to uncover which protocols cannot utilize the resources that are commonly

found in modern server-grade hardware and link this inability to protocol-level design

decisions, so that we can craft our set of guidelines for protocol design for modern

hardware. Notably, an alternative research direction would be to examine the efficiency

with which resources are used (e.g., to minimize joule per request), in which case we

would compare protocols when using the same number of resources [126]. This is not

the goal of this thesis, and is left for future work.

Table 3.3. The left-hand side of Table 3.3 shows the throughput in M.reqs/s of all

protocols when varying the write ratio. The right-hand side shows the latency (99th /

average) of all protocols in microseconds at 100% write ratio, while varying the load

of the protocol (i.e., with respect to peak throughput).

Let us now summarize the key insights from this study.

1. Total order is not thread-scalable. Protocols that apply writes in a total order

are not thread-scalable: the relative positions of ZAB, MP (LTO), and Derecho (DTO)

in Figure 3.4a and Figure 3.4b demonstrate this point. The reason is that explicitly

enforcing total order mandates that threads can only apply writes to the kvs-structure

in lock-step. In contrast, protocols that enforce per-key order (LPKO and DPKO) can

scale well with more threads.

2. The leader jeopardizes load balance. The adverse effect of the leader on load bal-

ance is not apparent in LTO protocols because they cannot scale enough to uncover it.

However it is visible in LPKO protocols. Specifically, CHT does not scale well when

multi-threaded because the send side of the leader becomes the bottleneck. There are

two protocol-level optimizations that restore load balance: propagating writes through

a chain (i.e., CRAQ) and using multiple leaders (i.e., CHT-multi-ldr).

3. Hardware multicast is effective for LPKO. The hardware multicast primitive can

make a huge difference, but only in LPKO protocols. Specifically, the hardware multi-

cast primitive provides a 3x benefit for CHT, i.e., CHT-mcast. The benefit for the rest

of the protocols is very small, typically around 5%. The reason is that the multicast

only relieves load on the send side of the node that performs the broadcast: it reduces

the number of messages sent, but not the number of messages received. Therefore,

multicast is extremely useful for leader-based protocols that are bottlenecked by the

send bandwidth of the leader. It is not so useful for already well-balanced protocols

(i.e., DTO and DPKO), while LTO protocols do not benefit, as they are already bottle-
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necked by thread-scalability. We will expand in Section 3.5.4.

4. DPKO excels when multi-threaded. In the absence of a leader or a total order,

DPKO protocols must find creative ways to serialize writes in a decentralized man-

ner. On the one hand, this invites a level of complexity that has an adverse affect on

the work-per-request ratio. This is portrayed by the single-threaded performance of

CP and All-Aboard, which is the lowest among all protocols. On the other hand, the

decentralized nature of these protocols makes them naturally thread-scalable and load

balanced. This is why multi-threading yields a ∼9-10x throughput improvement. No-

tably, by downgrading the availability guarantees, as in Hermes, or downgrading the

API, as in ABD, it is possible reduce the work-per-request ratio.

5. Thread-scalability > load balance > work-per-request. From Figure 3.4b, we

observe that the non-thread-scalable protocols, ZAB, MP and Derecho are the worst

performers, rendering thread-scalability the most critical property to honour in the

modern era. Furthermore, All-Aboard, a protocol with a very high work-per-request

ratio, significantly outperforms CHT, which sacrifices load balance, even though CHT

offers lower availability guarantees (discussed in §3.2.6). From that we concur that it is

preferable to optimize for load balance rather than work-per-request ratio. At the limits

of the work-per-request ratio (i.e., in CP), the two metrics appear equally important, as

CHT and CP are roughly matched.

6. Local reads are great but with caveats. Recall that MP performs reads by sending

them to the leader. CP, All-aboard and ABD perform ABD-reads (typically 1 broadcast

round). The rest perform reads locally. From Figure 3.4c, we see that there is a big

gap between protocols with local reads and the rest, which perform them remotely.

However there are a couple of caveats. Firstly, local reads always come at a cost as

they downgrade either the consistency or the availability guarantees, as we saw in

Section 3.2.6. Furthermore, note that ZAB, even though it performs its reads locally, is

on par with the protocols that perform reads remotely. This is because it is bottlenecked

by its write throughput. We elaborate in Section 3.5.2.

7. For better latency, choose throughput. In the Introduction, we hypothesized that

a request’s latency should not exceed a few tens of microseconds in a lightly loaded

system. Furthermore, we argued that to ensure a low latency, we should favour high-

throughput protocols. The latency measurements for 25% load in Table 3.3 verify that

at a light load, all protocols incur a latency of a few tens of microseconds. Furthermore,

we observe that for all protocols, as load increases so does latency, with a big spike at
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100% load. Therefore, to maintain a latency of a few tens of microseconds, one should

favour high-throughput protocols, as they will be less likely to be overloaded when

operating on the target throughput.

Summary – Recommendations. Based on our insights, we first provide some general

directives on protocol design and then offer recommendations on choosing a protocol.

General Directives.

• Prioritize thread-scalability, then load-balance and then the work-per-request ra-

tio.

• Total order should be avoided in read/write systems.

• Leader-based protocols can achieve high-performance, but care must be taken to

ensure load balance.

• It is worth investing in the hardware multicast primitive only in the case of LPKO

protocols.

• Local reads can deliver great performance, but it’s not guaranteed.

• In order to minimize latency, choose protocols with high throughput.

Recommendations

• All-aboard is the most attractive design point for a scenario where: 1) availability

is the most important concern and 2) conditional writes are required.

• If simple writes will do, then we recommend ABD.

• If a small window of unavailability on a failure is tolerable, then Hermes is the

best candidate, while CHT-multi-ldr and CRAQ are good alternatives.

3.5.2 LTO: ZAB and Multi-Paxos

In this section, we first briefly describe the operation of our two implemented LTO pro-

tocols: ZAB and Multi-Paxos (MP). Then we focus on their results, first discussing

thread-scalability for write throughput, and then the throughput when varying the write

ratio.
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Throughput vs. Write ratio Latency vs. Load

0% 1% 5% 20% 50% 75% 100% 25% 50% 75% 100%

ZAB 967 276 102 47 23.5 16.5 14 22 / 16 30 / 23 40 / 32 110 / 95

MP 170 100 51 33 22 16 14 22 / 16 30 / 23 40 / 32 110 / 95

Derecho 967 445 235 79 33 22 16.6 16 / 13 24 / 19 32 / 27 94 / 86

CP 125 115 90 65 44 35 27 38 / 26 40 / 33 56 / 47 216 / 163

CHT 967 755 520 134 53 36 28 16 / 16 24 / 19 38 / 31 282 / 209

All-Aboard 125 116 92 70 51 42 39 24 / 18 38 / 27 58 / 40 252 / 167

ABD 125 118 102 84 71 64 61 28 / 26 34 / 33 52 / 47 138 / 163

CRAQ 967 739 476 246 123 87 67 34 / 22 48 / 30 58 / 37 242 / 138

CHT-multi-ldr 967 674 443 192 134 97 76 30 / 19 82 / 58 86 / 59 554 / 323

CHT-mcast 967 745 524 277 145 105 85 20 / 14 24 / 16 40 / 26 210 / 147

Hermes 967 735 515 275 150 107 89 18 / 13 24 / 15 36 / 22 110 / 78

Table 3.3: Left-hand side: Throughput in M.reqs/s varying the write ratio. Right-hand side:

99th percentile and average latency (99th/ avg) in µseconds varying the load in a write-only

workload.

ZAB & MP operation. All writes must be propagated to the leader which executes

them in two broadcast rounds: a prepare round and a commit round. The difference be-

tween ZAB and MP is in reads. ZAB executes reads locally downgrading consistency

guarantees to SC. MP offers lin, and so, all reads are sent to the leader.

Thread-scalability. The thread-scalability problem occurs when the different work-

ers, either in the leader or the followers, try to apply the writes to the kvs-structure.

For example, the write with write-id = 200 (i.e., write-200), can only be applied af-

ter write-199 has been applied. If worker-0 is responsible for applying write-200, but

not write-199, then worker-0 must wait until the worker responsible for write-199 ap-

plies it. Therefore the thread-scalability problem rises from the fact that workers can

only apply their writes to the kvs-structure in lock-step. Figure 3.5a shows the write-

only throughput of ZAB and MP when varying the number of threads (i.e., workers).

Scaling saturates at four workers. When deployed with more than 10 workers, the per-

formance drops because the additional workers are pinned to the second socket of the

server, hindering inter-thread communication.

Throughput when varying the write ratio. Figure 3.5b compares the throughput of

ZAB and MP with Derecho, when varying the write ratio. ZAB’s consistency relax-
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ation that allows for local reads pays off, as ZAB significantly outperforms MP in low

write ratios.

However, note that ZAB’s write throughput does not scale well in low write ratios.

For instance, at 5% write ratio, ZAB achieves 102 M.reqs/s, which means that its write

throughput is roughly 5 million per sec. Ideally, since local reads are fairly cheap, one

might expect that ZAB should have been able to maintain its peak write throughput

(14m at 100% write ratio) at lower write ratios. Note that Derecho maintains its 16.6m

write throughput at both 75% write ratio and 50% write ratio. Derecho is able to sustain

its write throughput better due to its decentralized nature and thus outperforms ZAB

in lower write ratios. In contrast, in ZAB (and MP), followers must send their writes

to the leader which coordinates their execution. When decreasing the write ratio, the

ability to batch multiple writes together into network packets and steer them into the

leader is disrupted by the execution of reads, and so the write throughput cannot be

maintained.

Passive followers. In order to examine whether it would be beneficial to spawn re-

quests only at the leader node, Figure 3.5c shows the throughput of ZAB-passive-flr, a

ZAB variant where followers are passive: i.e., followers are not connected with clients

and thus do not initiate the execution of requests. Rather, only the leader initiates re-

quests, while followers are only used to help coordinate writes. In this case, MP and

ZAB are identical, because in both protocols reads at the leader can execute locally.

ZAB-passive-flr can achieve the same write throughput as ZAB at 100% write ratio be-

cause all writes must execute at the leader anyway. However, its performance degrades

as reads increase. The reason is that the single node (i.e., the leader) cannot compete

with a 5-node deployment when it comes to executing local reads. Specifically, follow-

ers’ cpu and memory resources must be utilized to scale at low write ratios. Therefore

active followers that are responsible for client sessions are beneficial. This result holds

for LPKO protocols, too.

3.5.3 DTO: Derecho

We have already established the effects of the total order in write throughput and con-

trasted Derecho with ZAB and MP. Here we will briefly describe Derecho’s opera-

tion and comment on its performance in lower write ratios, contrasting it with two

DPKO protocols.

Derecho operation. In Derecho, writes are totally ordered and applied in that or-
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der. The different write-ids are statically pre-allocated to different nodes. Node-0 will

propose writes 0 to N−1, node-1 will propose writes N to 2N−1, and so on. Further-

more, Derecho performs reads locally, relaxing the consistency guarantees from lin to

SC (similarly to ZAB).

Performance. Without considering thread-scalability, DTO is a powerful idea as the

different nodes need not coordinate in order to serialize the writes. They merely need to

compute the order of their own writes through their node-id and broadcast them. This is

why Derecho is one of the better performing protocols in single-threaded performance

(Figure 3.4a). However, as we saw with ZAB and MP, applying writes in a total order

does not scale across many threads.

As discussed in the previous section, Derecho scales better than ZAB at lower write

ratios (Figure 3.5b); however its low write throughput still limits its total throughput at

low write ratios. For instance, when compared with Hermes (lin local reads) and CP

(ABD reads) in Figure 3.6a, Derecho is significantly outperformed by Hermes even

in low write ratios, because Hermes has a higher write throughput (due to its thread-

scalability), which allows it to scale well at low write ratios. However, Derecho’s local

reads allow it to outperform CP, on low write ratios, despite the fact that CP has a

higher write throughput.

3.5.4 LPKO: CHT, CHT-multi-ldr, and CRAQ

We start the discussion of the LPKO protocols with CHT and then extend it to CRAQ.

CHT operation. All writes in CHT are propagated to the leader. The leader completes

the writes in two broadcast rounds, similarly to ZAB and MP, with two differences: 1)

it does not create a total order of all writes and 2) it waits until a write has reached all

followers before committing it. The latter allows for local reads at the follower nodes.

Notably, reads need to block if there is an ongoing write to the same key, until that

write commits.

In CHT-multi-ldr each node is the leader for 1/N of all keys, with N being the

number of nodes. Upon receiving a write request for key K, the worker finds out the

leader for that key through a simple modulo operation on the key. Then, similarly to

CHT, the write is propagated to its leader, which executes it to completion.

CRAQ operation. CRAQ organizes the nodes in a chain. All writes are steered to the

head of the node, which then propagates them down the chain. When a write reaches

the tail (i.e., the last node of the chain), it is said to be committed and an ack propagates
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back, all the way to the head. On receiving the ack, nodes commit the write. Reads

are executed locally. As an optimization, reads do not block when there is an ongoing

write to the same key, but instead are propagated to the tail. The tail is guaranteed to

always know the latest committed write, because of its position in the chain.

Performance. Firstly, recall that from Figure 3.4b, we observed that CHT cannot

balance the load and is bottlenecked by the send side of the leader, which saturates

its NIC. There are three possible optimizations: using multiple leaders (CHT-multi-

ldr), using a chain (CRAQ), and finally using the hardware multicast primitive (CTH-

mcast).

Notably, CRAQ has the lowest impact among the three techniques, because it does

not completely balance the load, as the tail does not contribute in the propagation of

a write. In our 5-node deployment, the load is split between 4 nodes which explains

why CRAQ reaches only 4/5 of the throughput of a well-balanced protocol such as

CHT-mcast.

CHT-multi-ldr also falls short of CHT-mcast. The reason is a bit subtler. There is

less opportunity to amortize cpu and network costs in CHT-multi-ldr, because writes

need to be steered to different leaders. For example, assume that in our 5-node deploy-

ment a worker in one of the nodes receives 5 write requests from a client. Also assume

that each request must be steered to a different leader. The worker cannot batch all

messages to the same packet. Instead, it must create a packet for each of the writes,

sending them to the different leaders. Furthermore the worker itself may be the leader

for one of the writes, which means it must broadcast it, again losing the opportunity to

batch it with other writes. Conversely, in vanilla CHT, the worker would simply batch

all writes to the leader.

CHT-mcast enhances CHT with the multicast primitive. In CHT, the send side of

the leader is overloaded, because the leader broadcasts all writes, and every broadcast

requires N unicasts (for N followers). However, the followers receive only one message

from each broadcast, and thus when the leader utilizes 100% of its send bandwidth, the

followers only utilize 100/N% of their receive bandwidth.

CHT-mcast improves upon CHT exactly because in CHT the followers underutilize

their receive side. When the multicast primitive is used, the leader sends one message

per broadcast instead of N. The preexisting underutilization in the followers’ side al-

lows us to leverage the leeway created by the multicast at the leader’s send side, to send

more writes to the followers. Had there been no room in the receive side of the fol-

lowers, the multicast would simply reduce the bandwidth used at the leader send side,
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without improving performance. In fact this is exactly what happens for most of the

broadcasting protocols (ABD, Hermes, CHT-multi-ldr, Derecho). Notably, ZAB and

MP, even though leader-based, are not scalable enough to tap into the multicast’s ben-

efits. In Section 3.5.6, we elaborate on the impact of the hardware multicast primitive,

examining in depth how it affects protocols.

Figure 3.6b shows the throughput of CHT-multi-ldr, CHT and CRAQ when varying

the write ratio. Firstly note that CHT outperforms the other two for low write ratios.

This is because 1) CHT has a smaller work-per-request ratio and 2) CHT is not bottle-

necked by the leader’s send side at low write ratios. CHT’s work-per-request ratio is

smaller than CRAQs, because broadcasting writes is more efficient than propagating

them through a chain, as it allows for a better amortization of compute and network

costs. CHT-multi-ldr has an even higher work-per-request ratio than CRAQ, because

as the write ratio decreases, the opportunity to amortize costs by batching writes re-

duces, exacerbating its pre-existing problem. This is why it is outperformed by both

CRAQ and CHT. CHT-mcast scales CHT’s throughput at high write ratios as it avoids

the bottleneck in the leader’s send side bandwidth. As a result, its throughput is at the

highest level for all write ratios, matching that of Hermes (Figure 3.6c).

3.5.5 DPKO: CP, All-aboard, ABD, and Hermes

Firstly we briefly explain the operation of the protocols and then discuss their perfor-

mance.

Operation. In DPKO protocols, each node coordinates its own writes. An ABD write

requires two broadcast rounds. The first round finds out the version of the key stored

in a majority of nodes and the second sends out the new value. An ABD read requires

one broadcast round with an optional second. The first round finds out the latest value

from a majority of nodes. If the reader cannot infer from the replies to its first round

that a majority of nodes store this value, then it performs a second round to broadcast

it. Notably, the second round is not necessary in more than 99% of the reads.

CP requires three broadcast rounds to complete a write: propose, accept and com-

mit. All-aboard is an optimization over CP, allowing a write to commit after two rounds

when there are no conflicts or slow nodes, using CP as a fallback. Both CP and All-

aboard execute reads using ABD reads. Finally, Hermes requires two broadcast rounds

to complete a write. Its rounds are substantially more light-weight than CP and All-

aboard (and even ABD) but all messages must always reach all nodes. For that reason,
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Figure 3.7: Throughput vs write ratio for ABD, All-aboard & CP

Hermes reads are local.

Performance. Firstly, from Figure 3.4a, we observe that CP has the lowest single-

threaded performance. This is because of the extremely high work-per-request ratio

required in CP, as explained in Section 3.2.5. However, CP is thread-scalable and

well load balanced, enjoying a 10x improvement when multi-threaded (Figure 3.4b)

outperforming ZAB, MP and Derecho and matching CHT.

The All-aboard optimization reduces CP’s high work-per-request but not com-

pletely. This is why All-aboard is the second worse protocol when single-threaded.

Note that All-aboard has a significantly higher work-per-request ratio than Hermes

and ABD, which also require two broadcast rounds. This highlights the fact that sim-

ply using the number of broadcast rounds as a metric to gauge performance is not

sufficient. We need to factor in the size of the messages and the responses along with

the complexity to create them.

Similarly to CP, All-aboard scales very well (10x) when multi-threaded, outper-

forming CP, CHT and the total order protocols. Recall from Section 3.2.6 that CP

and All-aboard are the only two protocols (out of the ten) that can perform conditional

writes while remaining available in the event of a failure. Therefore, for those keen

on offering high availability, All-aboard comprises a great candidate, as it can also

provide reasonably high performance.

ABD also offers the same levels of availability, but it is the only protocol out of
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the ten that cannot perform conditional writes. This simplification affords ABD a sig-

nificantly lower work-per-request ratio than CP and All-aboard, which is why ABD

outperforms CP and All-aboard both single-threaded and multi-threaded. Figure 3.7

compares ABD, CP and All-aboard, varying the write ratio. Notably the read through-

put is equal for all three, as they all implement ABD-reads. However, as the write ratio

increases, ABD outperforms the other two due to its lower work-per-request ratio for

writes. Therefore, ABD comprises a great candidate, in cases where high availability

is required and simple writes will suffice (as opposed to conditional writes).

Figure 3.6c compares ABD with Hermes (and CHT-mcast). Even though ABD is

within a close distance in the write throughput, there is a big gap in the read throughput,

demonstrating the cost of high availability. Specifically, Hermes mandates that every

write reaches every node. In doing so, it concedes that all nodes must block on a

failure (discussed in Section 3.2.6). However, it takes advantage of this concession in

both reads and writes. In reads, by enabling them to execute locally, leveraging that

all nodes have received the latest committed write. And in writes, by accelerating their

operation, leveraging that a node that performs a write, has received all concurrent,

conflicting writes.

This renders Hermes the better performing protocol out of all ten, making it an

ideal candidate, for those who can afford an unavailability period in case of a failure.

3.5.6 Hardware Multicast

In this section, we revisit the performance impact of hardware multicast and specifi-

cally, why it provides a 3x benefit for CHT, but no more than 5% for the rest of the

protocols. The reason is that the multicast only relieves the send side of a broadcast.

Specifically, on a multicast, one packet is sent to the switch instead of N (assuming N

recipients). The switch then replicates the packet N times, propagating it to all recip-

ients. Without using the multicast primitive, the sender must send N packets. Let us

use Figure 3.8, to investigate how multicasting affects CHT and Hermes.

Figure 3.8 provides a pictorial view of the usage of the send and receive bandwidth

for CHT, CHT-mcast, Hermes and Hermes-mcast. Firstly note that the figure does not

provide a precise view of the measurements. Rather, it illustrates a rough approxima-

tion that will help us explain why multicast is helpful in certain scenarios. To simplify

further, in this discussion we will assume that smart-acks and smart-commits consume

zero bandwidth.
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In Figure 3.8a, we see that the CHT leader uses up all of its send bandwidth. The

leader utilizes a small fraction of its receive bandwidth by receiving followers’ writes.

The receive side of the follower is not well utilized, because it only receives 1/N of

the messages sent by the leader (assuming an N-side deployment). The send side of

the follower is used only to propagate writes to the leader.

In Figure 3.8b we see how CHT is affected when using the multicast (i.e., when

it becomes CHT-mcast). The leader’s send side is still saturated, but now each packet

is only sent once. Therefore, the leader now sends N times as many distinct packets.

Each follower receives all the packets that the leader sends, because each packet is

getting replicated at the switch and sent to all followers. Thus the follower’s receive

bandwidth is also saturated. Note that the send side of the follower is also increased,

as the follower now propagates more packets to the leader. For that reason, the leader’s

receive side is saturated too.

Note the key insight: CHT-mcast improves upon CHT because in CHT the fol-

lower’s receive side is underutilized. This allows us to leverage the leeway created by

the multicast at the leader’s send side by sending more packets to the followers. Had

the follower’s receive side not been underutilized, the multicast would simply reduce

the utilization of the leader’s send side.

This is exactly what happens with Hermes and Hermes-mcast in Figure 3.8c and

d, which show the network bandwidth utilization of a Hermes and Hermes-mcast node

respectively. A Hermes node utilizes both the send and receive bandwidth symmetri-

cally. Employing multicast in Hermes-mcast (Figure 3.8d) reduces the utilization of

the send bandwidth of every node. However, this reduction cannot be leveraged to send

more packets –and thus increase throughput – because no node can receive any more

packets.

To understand why CHT-mcast can match the performance of Hermes (or Hermes-

mcast), let us compare the send bandwidth of the leader of CHT-mcast and the send

bandwidth of a node in Hermes-mcast. Specifically, the percentage of the send band-

width used by one Hermes-mcast node is dictated by how much one Hermes-mcast

nodes can receive. For example assume a deployment with 5 nodes, each of which has

100 Gbps send bandwidth and 100 Gbps receive bandwidth. Each Hermes-mcast node

receives multicasts from the rest 4 nodes i.e. it receives 25 Gbps from each node. This

means that any Hermes-mcast node is using 25 Gbps of its send bandwidth, which gets

replicated by the switch to reach all other nodes. All 5 Hermes-mcast nodes combined

can complete 125 Gb worth of new writes every second. Generalizing, a Hermes-mcast
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Figure 3.8: An illustration of the send and receive bandwidth of CHT, CHT-mcast, Hermes and

Hermes-mcast

node uses 1/N−1 of its send bandwidth and all N Hermes-mcast nodes use N/N−1

of one node’s send bandwidth to multicast new writes.

On the other hand, CHT-mcast uses the entire send bandwidth of a single node –

the leader. Therefore, in our 5-node example, CHT-mcast can complete 100 Gb worth

of new writes every second. Comparing Hermes-mcast with CHT-mcast, we can infer

that Hermes-mcast can, in theory, be only N/N−1 times better than CHT-mcast. For

instance in our 5-node deployment, Hermes can outperform CHT-mcast by up to 25%.

Furthermore, in theory Hermes and Hermes-mcast should have the same performance.

Figure 3.6c, shows that in practice, because Hermes does not manage to fully satu-

rate its send bandwidth, CHT-mcast and Hermes (without multicast) have almost iden-

tical behaviour for all write ratios. Finally, the write throughput of Hermes-mcast (94

M.reqs/s) is around 10% better than CHT-mcast.

3.6 Related Work

Related Frameworks. Similarly to Odyssey, Paxi [14] offers a rich interface that

enables the fast development of replication protocols. However, Paxi is neither multi-
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threaded nor RDMA-enabled. eRPC [86] is a general-purpose networking framework

offering RDMA-based RPCs, similarly to Odyssey. However, Odyssey also provides

functionality tailored for replication protocols, such as the smart messages (§3.3.4.3).

The reason we did not use eRPC as the networking layer of Odyssey, is twofold. First,

in eRPC, a broadcast requires a separate memcpy for each of the messages. In our setup

that would result in multiple GBytes/s worth of unnecessary memcpying, for almost

all protocols. Secondly, eRPC would not allow us to use the multicast primitive.

Finally, G-DUR [21] is a generic middleware that enables the developers to im-

plement and evaluate a large family of distributed transactional protocols. G-DUR

focuses on providing a substrate for transactional protocols that are based on the De-

ferred Update Replication (DUR) approach. In contrast, Odyssey focuses on exploring

the impact of modern hardware in strongly-consistent replication protocols.

Analysis of replication protocols. Ailijiang et al. [14] dissect the performance of

strongly-consistent replication protocols. Their analysis is complimentary to ours, as

they focused on latency and availability on wide-area-networks and geo-replication,

while we focus on performance within the datacenter and over modern hardware.

Modern Hardware. Odyssey investigates the interplay between protocol-level de-

sign decisions and three advances that are described as modern hardware: many-core

servers, user-level high-bandwidth networking and high-capacity main memory. No-

tably, Szekeres et al. [150] also observe the importance of thread-scalability in the era

of user-level networking, and propose the Zero-Coordination Principle a guideline to

building thread-scalable replicated transactional storage systems. Furthermore, recent

work [54, 83, 84, 108, 111, 112, 168] has investigated the impact of programmable

hardware (FPGAs, smart NICs and switches) in deploying storage systems in the dat-

acenter. Such programmable hardware can be used to accelerate the replication proto-

col. We believe that by uncovering the impact of protocol-level actions on performance

our comparison of protocols can serve as a starting point for this endeavor, guiding both

the selection of protocols to accelerate and the acceleration process itself.

Skewed workloads. Our evaluation does not investigate the sensitivity of replication

protocols under a skewed workload (e.g., zipfian distribution [136]). This is not an

oversight.

It is possible to apply an optimization where reads and writes to the most popular

keys (i.e., the “hot keys”) can be combined within each server by leveraging the fact

that: 1) a server can efficiently keep track of the hot keys [45, 115, 128] and 2) at any
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given moment, a server is expected to be working on multiple requests for each of the

hot keys. This optimization turns skew from problem to opportunity. This is not a

surprise: researches have repeatedly observed that skew is a form of locality, and as

such it can be leveraged to increase performance [53, 58, 112, 115].

Notably, the optimization is equally applicable to all ten protocols. Consequently,

evaluating the protocols without the optimization would paint a false picture, suggest-

ing that protocols suffer under skew, when in reality they can thrive under it. However,

the optimization will take a different shape for each protocol. Therefore, incorporating

the optimization to all ten protocols will require substantial research and we leave it

for future work.

3.7 Conclusion

In this chapter we characterized the performance of strongly-consistent replication pro-

tocols over modern hardware and we uncovered the best design practices in the modern

era, both at the protocol-level and the system-level.

At the system-level, we presented Odyssey, a framework that enables the fast de-

velopment and deployment of replication protocols over modern hardware. Odyssey

encodes the best practices and lessons learned from building multiple RDMA-based,

multi-threaded, in-memory KVSes [58, 59, 60, 61, 91].

Over Odyssey, we built and evaluated ten protocols. Extrapolating their results

to the design space through an informal taxonomy, we provided a characterization of

strongly-consistent replication protocols. Our study, presented as a set of directives and

recommendations, demonstrated the importance of hardware-aware protocol design.

Crucially we saw that the true limits of a protocol will be uncovered only when all

artificially imposed bottlenecks (e.g., slow network and disk) have been removed. For

instance, we saw that ZAB outperforms Classic Paxos (CP) by more than 2x when

both are single-threaded, but the result is inverted when they are multi-threaded.

Crucially, whilst our characterization focused on the space of strongly consistent

protocols, the contributions of this work in uncovering best design practices are gen-

eral. Armed with both the system-level knowledge encapsulated in Odyssey and our

protocol-level characterization and directives, we will now proceed to design Kite.
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Kite: Efficient and Available Release

Consistency for the Datacenter

4.1 Introduction

The purpose of this thesis is to design the replication layer for a general-purpose, repli-

cated KVS that maximizes performance without compromising on consistency, avail-

ability or programmability. In the previous chapter, we took a significant step towards

this direction by uncovering the best practices for protocol design and characterizing

the space of strongly-consistent protocols. In this chapter, we build on these results, to

study how to navigate the trade-off between consistency and performance.

Figure 4.1 demonstrates this trade-off. Specifically it compares the throughput in

M. reqs/s of three protocols: ES [36], Hermes [91], and ABD [122], when varying the

write ratio. Eventual Store (ES) is a per-key SC protocol implemented over Odyssey,

that represents the upper bound of performance that can be achieved for weak consis-

tency. As we saw in the previous chapter, Hermes represents the maximum perfor-

mance we can achieve for strong consistency when sacrificing high availability. ABD

represents the maximum performance that can be achieved when offering both high

availability and strong consistency.

Notably, Hermes closely approaches the upper bound of performance that can be

achieved for weak consistency (ES). This means that if we can afford to sacrifice high

availability, the problem is solved: we can simply implement Hermes and get perfor-

mance, consistency and programmability.

However, we also want to offer high availability to create a general-purpose KVS.

From Figure 4.1, we observe that when high availability is a concern, then there is a

55
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Figure 4.1: Throughput in M. reqs/s of Eventual Store (ES), Hermes and ABD, when varying

the write ratio.

big gap between strong (ABD) and weak consistency (ES). Whilst expensive, strong

consistency is necessary for achieving coordination and synchronization [25]. Natu-

rally, the question that arises is whether we can design a KVS that incurs the penalties

of strong consistency only when synchronization is used.

As discussed in Section 2.4, multiple consistency level (MCL) KVSes [22, 44, 79,

110, 156, 166] comprise the current state-of-the-art approach to navigate the trade-off

between consistency and performance. MCL KVSes enable the programmer to trade

consistency for performance by requiring them to specify the consistency needs for

each access. We find the MCL API unsatisfying on two grounds: programmability and

performance.

• Programmability. The API should not ask programmers to reason about the

implementation-centric consistency level for each and every access; rather it

should provide them with an intuitive, programmer-centric interface.

• Performance. Specifying the consistency level of individual accesses fails to

capture the ordering relationship between strong and weak accesses that natu-

rally occur in programs. For example, consider the ubiquitous producer-consumer

synchronization pattern. The producer creates an object, writing each of its 1000
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fields, and then raises a flag to announce that the object is ready to be read. Mean-

while the consumer polls on the flag; when it finally sees it raised, it proceeds to

read the object. Note that the intended behavior is that when the raised flag be-

comes visible, the object and its 1000 fields must become visible, too. The only

way to achieve this behavior in today’s MCL API is to label all of the accesses as

strong. Clearly, this is suboptimal performance-wise. An ideal API would allow

for the writes to the fields to be reordered but ensure that all of these writes take

effect before the write to flag.

To remedy this situation, we pose the question: Is there a consistency API that simpli-

fies programming, while allowing for the system to extract maximum performance?

4.1.1 A Case for Release Consistency

To answer the question, we turn to the shared memory community which has grappled

with these very questions. After a 30-year debate, the community has converged on the

Data-Race-Free (DRF) programming paradigm [13] (e.g. C/C++, Java, Rust). DRF is

a contract between the programmer and the system: if the programmer writes programs

free of data races and correctly annotates synchronization operations, the system will

provide strong consistency. Under the hood, the system honors the contract through a

DRF-compliant memory model, typically a variant of Release Consistency (RC) [23,

64, 120, 164]. In this work, we propose the adoption of the DRF-compliant RC for

replicated KVSes.

Going back to the question we posed earlier, we argue that RC ticks both boxes.

• Programmability. Instead of asking the programmer to reason about consis-

tency, RC requires them to explicitly annotate synchronization operations. RC

offers the typical read / write / RMW API with a twist: when writing to a syn-

chronization variable (e.g., raising a flag or releasing a lock), that write must be

marked as a release. When reading from a synchronization variable (e.g., testing

a flag, or grabbing a lock), that read must be marked as an acquire.

• Performance. An RC enforcement mechanism can potentially leverage pro-

grammer annotations for reordering non-synchronization (relaxed) operations,

while enforcing ordering (RC’s one-sided barrier semantics) only when syn-

chronization is required. However, to our knowledge the performance benefits

of RC have not been explored previously in an asynchronous environment with
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individual machine and network failures (i.e., the failure model described in Sec-

tion 2.3), mainly because there is no prior work on how to efficiently enforce

RC’s barrier semantics in this environment.

4.1.2 Kite

We present Kite, the first general- purpose, highly-available, replicated, RDMA-enabled

KVS that offers RCLin, a linearizable variant of RC (§2.2.4). We note that even though

RC variants have been offered previously in distributed shared memory (DSM) sys-

tems [40, 93, 95, 149], we are, to the best of our knowledge, the first to offer a highly

available RC system in an asynchronous setting with individual machine and network

failures. In building Kite, we address three challenges:

1. Identifying protocol mappings (§4.2). The basic premise of RC is maximizing

performance by providing strong consistency only when required. To achieve this

we must identify protocols with different consistency/performance trade-offs that map

to the RC API. Using the study of Chapter 3, we identify as ideal candidates three

asynchronous, fully-distributed protocols: Eventual Store (ES) [36], ABD [122] and

Classic Paxos (CP) [101]. Specifically, relaxed reads and writes are mapped to ES, an

efficient EC protocol that executes reads locally; releases and acquires are mapped to

ABD, that offers linearizable reads and writes; and finally, RMWs are mapped to CP.

Note, that we also offer All-aboard for RMWs, but CP is the more general choice as

we will see in Section 4.2.4.

2. Enforcing RC barrier semantics (§4.3, §4.4). Identifying protocol mappings is

not enough; the chosen protocols must be augmented to enforce RC’s barrier seman-

tics. The challenge is to do this while retaining the efficiency of ES—in particular its

“local reads” property. Alas, ensuring that reads are always local and consistent in an

asynchronous environment is challenging. Kite sidesteps this problem with a fast/s-

low path mechanism: the blocking fast path executes reads locally, albeit assuming a

synchronous environment, whereas the nonblocking slow path can operate on an asyn-

chronous environment, albeit sacrificing local reads. Kite alternates between the two

paths. In the common case where messages are delivered on time and machines do not

fail, Kite operates on the fast path. When asynchrony presents itself (e.g. through a big

network delay), Kite conservatively falls back to the slow path temporarily, before re-

verting to the fast path. Thus, Kite hinges on the asynchronous slow path for progress,

exploiting the synchronous fast path for performance. We describe this mechanism in
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Section 4.3 and we rigorously prove it enforces RC in Section 4.4.

3. Efficient system implementation. We implement Kite over Odyssey, combin-

ing our implementations of CP and ABD with an implementation of ES and Kite’s

slow/fast path mechanism. As a result of using the Odyssey framework, Kite is multi-

threaded, uses MICA as its underlying kvs-structure and makes optimal use of RDMA

networking.

Contributions. In summary, we present the following contributions:

• We introduce Kite, a replicated, RDMA-enabled KVS that offers RCLin in an

asynchronous environment with network and crash-stop failures.

• Kite enforces RC’s barriers efficiently via a fast/slow path mechanism, that lever-

ages the absence of failures in the common case to maximize performance, while

hinging on the slow path for progress.

• Kite leverages Odyssey to implement ABD, ES, Classic Paxos and All-aboard

and combine them with the RC barrier semantics in an RDMA-enabled, heavily

multi-threaded manner.

• We rigorously prove that the fast/slow path mechanism of Kite enforces RC.

• We show that Kite reaps the benefits of strong consistency while enjoying per-

formance that is very close to weak consistency, coming within 31%-12% of the

optimal performance of weak consistency (ES) on a workload with 5% synchro-

nization.

• We further demonstrate the efficacy of Kite by porting three lock-free shared-

memory workloads using the Odyssey API, and show that using RC allows Kite

to outperform the upper bound estimate of an MCL KVS by 1.56× to 2.3×.

4.2 Setting the Stage: Kite Mappings

As discussed in Section 2.2.4, Kite enforces a variant of RC, dubbed RCLin, which

preserves lin among releases and acquires. Table 4.1 repeats the RCLin API and the

required orderings of Table 2.1, but also adds the three protocols that Kite uses to

execute the different commands. In this section, we explain our rationale behind these

choices and provide an overview of each of the three protocols. We begin with Lamport

logical clocks [99], as they are a vital part of all three protocols.
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Command Ordering Kite mapping

Relaxed Read/Write no ordering Eventual Store [36]

Release Write
all⇒ release

release⇒ acquire
ABD [122]

Acquire Read acquire⇒ all ABD [122]

RMW
all⇒ RMW

RMW⇒ all
Classic Paxos [101]

Table 4.1: RCSC/RCLin API, orderings and Kite mappings.

4.2.1 Lamport Logical Clock (LLCs)

An LLC [99] is a pair < v,mid > of a monotonically increasing version number, v, and

the id of the machine that creates the LLC, mid . An LLC A is said to be bigger than

LLC B, if A’s version number is bigger; if their versions are equal, the machine id is

used as a tie-breaker.

LLCs make it possible to generate a globally unique “time” for an event without

any coordination. A machine can advance an LLC A to create a unique LLC B by

incrementing A’s local version and combining it with its own machine id. LLCs can

be then leveraged to order events (e.g., serialize writes) in a distributed manner, with-

out the need for communication or with explicit ordering points (e.g., a leader node).

Indeed, all three protocols employed in Kite leverage LLCs to avoid centralized points

when ordering events.

4.2.2 Eventual Store for relaxed reads and writes

Eventual Store (ES) [36] is a decentralized, per-key order (DPKO) protocol that en-

forces per-key SC (§ 2.2.1). ES mandates that each machine maintains an LLC along

with every key in the local kvs-structure. A read simply returns the value stored on the

local kvs-structure without any communication between the machines. On a write, the

machine advances the locally stored LLC, creating a unique LLC which will be used

to tag its write. The write is then broadcast to the other machines. Remote machines

will apply the write iff its LLC is bigger than their locally stored LLC. The issuing ma-

chine will report completion immediately after broadcasting the write, without waiting

for acknowledgements (acks) from remote machines. However, remote machines send



4.2. Setting the Stage: Kite Mappings 61

acks to facilitate flow control.

For instance, assume that in a deployment of 5 machines, M1-M5, M1 must per-

form a write on key K1. Assume that K1 is stored in the local kvs-structure of M1

with an LLCK1 =< v = x,mid = M3 >. M1 will advance this LLC, creating the unique

LLC′K1
=< v = x+ 1,mid = M1 >. Then M1 will broadcast its new value along with

LLC′K1
. Remote machines (M2 - M5) will apply M1’s write iff LLC′K1

is bigger than

the LLC stored with K1 in their local kvs-structure.

Why ES? ES is extremely efficient, incurring no more than the absolutely necessary

protocol overhead: reads execute locally and writes broadcast the new value, an action

that is necessary for fault tolerance. Besides, ES is naturally asynchronous and tolerant

to failures.

4.2.3 ABD for releases and acquires

In the previous chapter, we identified ABD as the best option for linearizable reads and

writes (but not RMWs) for high availability. Leveraging this study, we select ABD

to perform releases and acquires. In addition, ABD is a natural match for ES: both

protocols use broadcasts and per-key LLCs, enabling sharing of metadata and network

optimizations across them. Below, we describe ABD, noting that an LLC is maintained

for each key.

Write. A write request performs two broadcast rounds, gathering responses from a

quorum of machines for each round. The first round reads the per-key LLCs stored

in the kvs-structure of remote replicas. Upon gathering a quorum of responses, the

machine will create a new LLC by advancing the biggest LLC discovered in this first

round. The second round simply broadcasts the new value along with its LLC (simi-

larly to EC). Completion is reported to the client as soon as a quorum of acknowledge-

ments (acks) has been gathered for the second round (unlike EC, which does not need

to wait). Remote machines apply the new write iff its LLC is bigger than the locally

stored LLC (identically to EC).

Note that, because the first round reads the LLC stored in a quorum of machines

before creating its own LLC, the new write is guaranteed to use a bigger LLC than any

completed write.

Read. A read request performs one broadcast round where it reads the values and LLCs

from a quorum of replicas, returning the value with the highest LLC. If, by inspecting

the responses of this first round, the issuing machine cannot infer that the value to be
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returned has already been seen by a quorum of replicas, then a second broadcast is

performed with that value and its LLC. This second round is identical to the second

round of the ABD write.

This second round ensures that any value returned to the client, has already been

applied to a quorum of machines. Notably, in our evaluation this second round occurs

in less than 1% of reads for most workloads.

4.2.4 Classic Paxos and All-aboard for RMWs

In the previous chapter, we identified All-aboard [77] and then CP [101] as the best

options for executing RMWs while offering high availability. However, only CP can

be combined with ABD writes. Therefore, by default Kite executes RMWs with CP

and releases with ABD. However, Kite can be configured to use All-aboard for both

releases and RMWs. Below we describe 1) the operation of CP, 2) how we combine it

with ABD and ES and 3) why we do not use All-aboard.

Basic CP operation. CP requires two broadcast rounds: a propose round and an

accept round. When a replica acks an accept for a CP command (i.e., an RMW), it is

said to accept the command. If a command is accepted by a quorum of replicas, then

the command is said to have committed. In practice (and in Kite), a commit message

is also broadcast to notify the rest of the replicas. Therefore, a CP command in Kite

typically completes within three broadcast rounds. The complete specification of CP,

All-aboard and how they combine with ABD, can be found in [59].

Combination with ABD and ES. ABD and ES writes naturally serialize through

the use of LLCs. In order to serialize CP RMWs with ABD/ES writes we leverage

carstamps [37]. A carstamp is a pair < LLC, paxos-no >, of an LLC and paxos-no, a

monotonically increasing number that denotes how many times we have executed CP

on a key. Each key stores a carstamp as part of its metadata. A carstamp C1 is bigger

than C2, if C1’s LLC is greater, or if their LLCs are equal and C1’s paxos-no is greater.

An RMW will select an LLC as its base. That is, it will select a unique ABD/ES write

to serialize after. That allows all machines to agree on a single order between ABD/ES

writes and CP RMWs. We refer the reader to our complete specification [59] for a

more detailed description.

All-aboard. Kitecan be configured to use All-aboard, but in this case both RMWs and

releases will be executed with All-aboard. All-aboard performs better than CP because

it shaves off the propose round, and thus requires two broadcast rounds to complete
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an RMW instead of three. However, in Kite, the propose round also reads the base

LLC that the RMW will use; for carstamps to work, RMWs must know their base LLC

before their accept round [59]. Therefore, to use All-aboard with carstamps, we would

have to add one more broadcast round in the beginning, offsetting its benefits.

As we will see in Section 4.3.3, when the RMW has release semantics the propose

round is overlapped with gathering acknowledgements of previous relaxed writes and

thus its performance impact is mitigated. As a result in typical cases, where RMWs

make up a small percentage of the workload (up to 5%) we measure no performance

difference between using All-aboard and CP for RMWs.

4.3 Enforcing RC Barrier Semantics

In the previous section, we described how Kite maps the RC API to existing protocols.

This is not sufficient to enforce RC barrier semantics, however. Kite enforces the

barrier semantics through its fast/slow path mechanism, relying on a nonblocking slow

path for progress, while leveraging a blocking fast path for performance. We first

provide the big picture, explaining the problem that the mechanism addresses and its

solution (§4.3.1). We then provide an in-depth description of the mechanism (§4.3.2)

and discuss its optimizations (§4.3.3).

4.3.1 Big picture

Consider the example shown in Figure 4.2, assuming that sessions, S1 and S2, are

mapped to different machines. (For brevity, we refer to the machines using the session

names.) RC mandates that if S2’s read of f lag (acquire) returns 1, then its read of X

must also return 1. Since relaxed reads in Kite are mapped to ES, they are performed

locally. Therefore, to enforce RC, Kite must ensure that if S1’s write (release) to f lag

has reached S2, then the write to X must have also reached S2.

Fast path: RC & ES without asynchrony. In the common case where machines

operate without big delays, the condition is met in Kite through the fast path which

enforces one simple rule: before the release begins its execution, Kite ensures that

each write prior to the release is acked by all replicas. This rule enables a relaxed read

to execute locally without violating RC. In our example of Figure 4.2, we can assert

that by the time the acquire from S2 returns f lag = 1, S2 must have already acked the

write to X , and thus can execute its read to X locally via ES.
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The problems caused by asynchrony. Problematically, the fast path rule requires

each write before a release to be acknowledged by all replicas; this cannot be enforced

in an asynchronous environment. For instance, assume that S1 does not receive an ack

from S2 for the write to X . The ack may have not arrived because S2 has failed or

because S2 is slow. This presents S1 with a dilemma: on the one hand, if S2 has failed,

S1 should not block indefinitely waiting for an ack; on the other hand, if S2 is alive,

S1 should wait for its ack or risk S2 reading X = 0. Even worse, if S2 is alive but has

simply missed the write from S1, S1 can neither wait, as it will block indefinitely, nor

move on, as it will violate RC.

Kite’s solution: The fast/slow path. Kite solves this problem through its fast/slow

path mechanism: on an acquire, S2 discovers whether it has lost a write message. If

so, S2 deems its entire local storage to be stale (out-of-epoch), transitioning itself to the

slow path, where it must refresh each of the keys before accessing them again locally

(i.e. with ES). Note that, unless S2 performs another acquire, it only needs to refresh

each key once, because in RC, the relaxed accesses need only be as fresh as the latest

acquire.

While rendering the entire local storage stale may appear as an extreme measure,

we note that this overhead is rarely incurred, because in a controlled, datacenter en-

vironment, asynchrony is relatively rare [32, 94]. More importantly, shifting all the

overhead to the misbehaving machine allows for a very efficient fast path, as it ensures

that asynchrony-related overheads are incurred only when asynchrony manifests.

Below we sketch how the fast/slow path mechanism will work for the example in

Figure 4.2.

� On a release. Before writing to f lag (release), S1 attempts to gather acks from

all machines for its write to X within a timeout. If the timeout expires and S1 has

not received an ack from S2, then S1 first broadcasts that S2 is delinquent (i.e., is

suspected to have missed one or more writes), ensures that a quorum of machines have

been informed of S2’s delinquent status, and then finally, proceeds with its release.

� On an acquire. Because acquires are implemented with ABD, when S2 acquires

f lag = 1 at a later time, it must reach a quorum of machines and thus will intersect

with the quorum that knows of S2’s delinquent status. Then, and before completing the

acquire, S2 renders its entire local store stale (out-of-epoch), by simply incrementing

its machine epoch-id. (The epoch semantics is described in the next section.)

� On a relaxed access. A relaxed access to an out-of-epoch key cannot be performed
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Figure 4.2: Producer-consumer pattern between S1 and S2.

with ES (i.e. in the fast path). Instead, the key is restored in-epoch in the slow path,

through an ABD access (i.e. a stripped-down ABD as explained in §4.3.3). A key is

restored by simply advancing its own key’s epoch-id to match the machine’s epoch-id.

One final problem. After S2 transitions to the slow path, it must notify the remote

machines that it has been made aware of its delinquent status and has transitioned to

the slow path. This is necessary to prevent the pathological case where subsequent

acquires from S2 keep discovering that S2 is delinquent, needlessly bringing it back

to the slow path. However, restoring its status as non-delinquent in remote machines

is not a trivial action, as S2 must ensure that the status is restored atomically and after

it has transitioned to the slow path. We defer the discussion of how Kite achieves the

task for Section 4.3.2.1.

4.3.2 Kite’s fast/slow path mechanism

This section provides an in-depth description of the fast/slow path mechanism.

Release. Before a release can execute, it attempts to gather acks (from all machines)

for each prior write in session order.

� Fast path release. If all prior writes have been acked by all machines, the release

simply executes.

� Slow path release. If any preceding write has not been acked by all machines within

a time-out, then each machine that has not acked one or more of the writes is deemed

delinquent; we refer to the set of delinquent machines detected upon a release as the

DM-set. Before the release begins executing it enforces two invariants: (1) all previous

writes have been acked by at least a quorum of machines and (2) the DM-set is known

to at least a quorum of machines. To satisfy (2), a slow-release message is broadcast,

containing the DM-set. The release begins executing only after a quorum of machines
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Figure 4.3: Zooming inside Machine B. Key L is out-of-epoch (slow-path); key K is in-epoch

(fast-path).

have acked the slow-release message.

Acquire. On an acquire, a machine learns whether it has been deemed delinquent by

querying a quorum of machines (piggybacking on top of ABD read protocol actions).

� Fast path acquire. If no remote machine deems the acquirer delinquent, the acquire

barrier is enforced by simply enforcing the session ordering acquire→ all. Plainly, a

request that follows the acquire in session ordering will start executing after the acquire

has completed.

� Slow path acquire. If the machine discovers it has been deemed delinquent, it

performs the following actions: (1) enforces the session ordering acquire→ all (same

as fast path) and (2) transitions to the slow path by incrementing its machine epoch-id,

rendering all locally stored keys out-of-epoch.

Epochs. As shown in Figure 4.3, each machine holds one epoch-id. (Epoch-ids of

different machines are not interrelated.) Additionally, each key stores a per-key epoch-

id as part of its metadata. Both per-key and machine epoch-ids are initially set to 0

and are monotonically increasing. On each relaxed access, the per-key epoch-id is

compared against the machine epoch-id. If the key’s epoch-id matches the machine’s

epoch-id, the key is in-epoch and can be accessed in the fast path (i.e. with ES).

Otherwise, if the machine epoch-id is greater, the key is said to be out-of-epoch, where

it can only be accessed in the slow path (i.e. with a stripped down version of ABD).

Returning to fast path. The transition to the fast path happens at a per-key granularity.

Upon accessing an out-of-epoch key (in the slow path), the key’s epoch-id is advanced

to the machine’s epoch-id, bringing the key back in-epoch. As an example, Figure 4.3
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depicts the state of Kite machine B. B’s machine epoch-id is 1, which means that B

has been delinquent in the past. B has two locally stored keys: L, which is out-of-

epoch and thus accessible only in the slow path, and K, which is in-epoch and thus has

been accessed in the slow path once, after B transitioned to the slow path. Note that

if the machine epoch-id is incremented while a slow path access is executing, then,

when the slow path access completes, the key must not be restored back in-epoch. For

this reason, the key’s epoch-id is advanced to what the machine epoch-id was when

the access started, rather than to the value of the machine epoch-id when the access

completes.

Fast/slow path summary. In summary the fast/slow path mechanism works as fol-

lows. Before executing a release one of the following must have happened: 1) all

previous writes have been acked by all; or 2) all previous writes have been acked by a

quorum, and a quorum of machines have seen the DM-set. Therefore, an acquire that

reads from a release, either is guaranteed to have seen all preceding writes or is guar-

anteed to find out about being delinquent and perform subsequent relaxed accesses in

the slow path. We prove this rigorously in the Section 4.4.

RMWs. The discussion naturally extends to RMWs: release barrier semantics are

implemented identically to regular releases and acquire barrier semantics are imple-

mented identically to acquires.

Time-out and Availability. Recall that before a release executes, it attempts to gather

all acks for prior writes within a time-out; if unsuccessful, it executes the slow path

barrier. We note that increasing the length of the time-out can affect availability, but

decreasing the time-out can only affect performance, as it will only mean machines go

to the slow path more often. Therefore the time-out length offers a trade-off between

availability and performance, and should be tuned with respect to the system require-

ments and the system environment. We revisit the time-out’s effect in Section 4.6.3.

4.3.2.1 Setting and resetting delinquency

In a Kite deployment, each machine maintains a delinquency bit-vector with a delin-

quency bit for each remote machine. The delinquency bit denotes whether a given

remote machine has been deemed delinquent and is used to notify that machine when

it performs an acquire.

Setting a bit. Delinquency bits get set upon receiving a slow-release message. Fig-

ure 4.4 illustrates the transitions of A’s bit-vector in a deployment with machines A,
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Figure 4.4: The transitions of the delinquency bit-vector of machine A, in a configuration with

3 machines: A, B, and C.

B and C. Firstly, A sets the bit for B in its bit-vector, when it receives a slow-release

message from C, denoting that B is delinquent.

Resetting a bit. Eventually, when B executes an acquire, it reaches A, finding out

that it must transition to the slow path. At this point, A must reset its bit for B, so that

subsequent acquires from B will not revert B to the slow path again. However, receiving

an acquire from B is not enough for A to reset the bit; rather, A must know that B has

transitioned to the slow path. To resolve this issue, when an acquirer discovers its

delinquency, it broadcasts a reset-bit message only after it has transitioned to the slow

path.

Atomic reset. Given that resetting a delinquency bit is a two-step process (acquire and

reset-bit), we must ensure the bit is atomically read and reset, without any intervening

slow-release messages. We ensure atomicity as follows. Each acquire is tagged with

a unique id, which is included in the generated reset-bit message. Upon receiving the

acquire from B, A transitions its bit to a transient state T and notes the unique id of

the acquire. Upon receiving a slow-release message that marks B as delinquent, A

unconditionally sets B’s bit to 1. Upon receiving a reset-bit message, A transitions the

bit back to 0, iff the bit is still in T state and the reset-bit originates from the acquire

that transitioned the bit to T .

4.3.3 Optimizations

Having established how Kite enforces RC, we now describe two non-intrusive,

protocol-level optimizations.

Overlapping a release with waiting. The first broadcast round of a release (i.e., ABD

write) reads the LLCs from a quorum of machines for the key to be written, to ensure
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that the releaser uses a sufficiently big LLC. Because reading remote LLCs is a benign

action that does not notify remote machines of the ensuing release, we perform it early,

overlapping its latency with waiting for acks of prior writes. Extending to the RMWs,

we overlap waiting for acks with the CP first round (i.e., proposing), which, similarly

to the first round an ABD write, does not contain the new value to be written. This

is why, the cost of the propose round of CP is mitigated, making All-aboard a less

attractive choice for Kite (as discussed in Section 4.2.4).

Slow path optimization. We earlier specified that the slow path of relaxed reads

and writes is implemented with ABD. However, ABD provides more guarantees than

required in this instance, as it is fully linearizable, whereas we only seek to enforce

RC. Specifically, the slow path must ensure that a relaxed read observes any completed

relaxed write that may have been missed, and as such, it is sufficient to read from a

quorum of machines, guaranteeing an intersection with writes. Therefore, the optional

second round broadcast of ABD reads is not required in this instance, as relaxed reads

need not make sure that the read value has been seen by a quorum. In the same spirit,

we complete writes without waiting for acks, as relaxed writes need not ensure that

the write has been seen by a quorum; rather the subsequent release in session order is

responsible for that.

4.4 Proof: Kite’s fast/slow path enforces RC

In this section, we prove informally that Kite’s fast/slow path mechanism enforces

RC. We first specify RC (§4.4.1) and provide a high-level sketch of the proof (§4.4.2).

Then, we identify the different cases of Kite’s operation, proving correctness on a

case-by-case basis. Specifically, we focus on three cases: Kite’s fast path (§4.4.3), the

transition from fast path to slow path (§4.4.4) and finally the transition from slow path

to fast path (§4.4.5).

4.4.1 Release Consistency Semantics

We use the following notation for memory events:

• Mi
x: memory operation (any type) to key x from session i. The operation can be

further specified as a read: Ri
x, a write W i

x or with an identifier (e.g. M1i
x)
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• Relix: a release (release write or release-RMW) to key x from session i.

• Acqi
x: an acquire (acquire read or acquire-RMW) to key x from session i.

By default an RMW has both acquire and release semantics. We use the following

notation for ordering memory events:

• Mi
x

so−→Mi
y : Mi

x precedes Mi
y in session order.

• Mi
x

hb−→Mj
y : Mi

x precedes Mj
y in the global history of memory events, which we

refer to as happens-before order ( hb−→).

We formalize Release Consistency using the following rules:

i) A memory access that precedes a release in session order appears before the

release in happens-before: Mi
x

so−→ Reli
y⇒ Mi

x
hb−→ Reli

y.

ii) A memory access that follows an acquire in session order appears after the ac-

quire in happens-before: Acqi
y

so−→Mi
x⇒ Acqi

y
hb−→Mi

x.

iii) An acquire that follows a release in session order appears after the release in

happens-before: Reli
y

so−→ Acqi
x⇒ Reli

y
hb−→ Acqi

x.

iv) Two memory accesses to the same key ordered in session order preserve their

ordering in happens-before: M1i
x

so−→M2i
x⇒ M1i

x
hb−→M2i

x.

v) RMW-atomicity axiom: an RMW appears to executes atomically, i.e., for an

RMW that is composed of a read Ri
x and a write W i

x , there can be no write W j
x

such that Ri
x

hb−→W j
x

hb−→W i
x .

vi) Load value axiom: A read to a key always reads the latest write to that key before

the read in happens-before: if W j
x

hb−→ Ri
x (and there is no other intervening write

W k
x such that W j

x
hb−→W k

x
hb−→ Ri

x), the read Ri
x reads the value written by the write

W j
x .
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Figure 4.5: Proof sketch assumed violation. The RC violation is that Session A reads X = init,

instead of X = 1.

4.4.2 Proof Sketch

The key result that needs to be proved is that Kite enforces the load value axiom: a

read must return the value written by the most recent write before it in happens-before.

Below, we provide a sketch of a proof, identifying the non-trivial cases that need to be

proved more rigorously, along the way.

One degenerate case is when both the write and the read are from the same session.

In this case, the load value axiom is enforced since Kite honors dependencies within

each session. More specifically, in the fast path, the write would have been applied to

the KVS before the read performs. In the slow path, every read explicitly checks for

dependencies with previous writes in progress.

Therefore, the interesting case is when the write and read are from two different

sessions: specifically W i
x (from session-i) and R j

x (from session-j). Without loss of

generality we assume that W i
x and R j

x are relaxed operations. The fact that the write

appears before the read in happens-before implies that there must be a release after

the write in session-i and an acquire before the read in session-j, such that the release

is ordered before the acquire in happens-before. As shown in Figure 4.5, given that

W i
x

so−→ Reli
f1

hb−→ Acq j
f2

so−→ R j
x, we need to prove that R j

x returns the value written by W i
x

(i.e. X = 1), and not the previous value of X (i.e. X = 0).

We first prove the following lemma and then proceed to our proof by examining the

different cases. For simplicity, for the rest of the section, we omit the thread identifiers

from the memory operations of Figure 4.5, referring to them as Wx, Rel f1 , Acq f2 and

Rx.

Lemma 4.4.1. Acq f2 cannot complete its execution (in real time) before Rel f1 begins

execution.
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Proof. Rel f1
hb−→Acq f2 implies that Acq f2 (in the general case) is at the end of a happens-

before chain of releases and acquires and Rel f1 is at the top of this chain. Because

releases and acquires are linearizable in Kite (owing to ABD), Acq f2 cannot complete

its execution before Rel f1 begins execution.

4.4.3 Case 1: Fast path (no failures or delay)

Let us assume that both session-i and session-j are operating in fast path. (I.e., the

machines in which the sessions are mapped are operating in the fast path.) Kite ensures

the load value axiom via the following real-time orderings:

• Before executing a release, Kite waits for all prior writes to be acked by all. This

means that Wx is acked by session-j before Rel f1 begins.

• Acq f2 cannot complete its execution (in real time) before Rel f1 begins execution

(from Lemma 4.4.1).

• Kite executes operations that follow an acquire in session order, only after the

acquire completes. This means that Rx begins execution only after the acquire

Acq f2 completes.

The above real-time orderings imply that Rx begins execution only after Wx has

been acked by session-j, and hence will read the correct value.

4.4.4 Case 2: Fast path/Slow path transition (failure or delay)

Both sessions are initially operating in the fast path, but session-j fails to receive the

write, Wx, owing to a failure (e.g., a message delay). In this case, the read Rx must still

return the value written by the write, and thus cannot execute locally in the fast path.

To this end, we must ensure the following. First, session-i should detect that

session-j is delinquent (i.e., suspected to have missed a write) and must broadcast this

information. Second, when session-j performs its acquire, it must discover it has been

deemed delinquent and must transition into the slow path. Finally, when session-j tran-

sitions to the slow path, its read to X must read session-i’s write to X . From the above

we can infer the following three lemmas that must be enforced in Kite for the load

value axiom to hold.

Lemma 4.4.2. Before executing a release, the set of delinquent machines (DM-set)

must be identified and, if not empty, broadcast to a quorum.
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Proof. This is enforced by Kite’s actions for a release. Kite attempts to wait for all

writes that precede a release to gather acks from all replicas before executing a release.

If not all acks can be gathered, the DM-set will be broadcast and the release will not

begin executing until the DM-set broadcast is acked by a quorum of machines.

Lemma 4.4.3. For a release Rel f1 and an acquire Acq f2 , with i 6= j, and Rel f1
hb−→Acq f2 ,

and if Rel f1 happens to publish delinquent machines before its execution, then Acq f2

should be able to read the set of delinquent machines published.

Proof. A release writes a new value to a quorum of replicas. Before any replica is

updated with the released value, the DM-set would have already reached a quorum of

replicas. It follows that if the released value can be seen, the DM-set has reached a

quorum of replicas. This is the release invariant.

Case a: the release synchronizes with the acquire. I.e., the acquire Acq f2 reads the

value of release Rel f1 . (This is only possible if f1 = f2 = f ). Following ABD, an ac-

quire gathers responses from a quorum of replicas, and reads the value with the highest

LLC. If it cannot ensure that the read value has been seen by a quorum, it broadcasts

a write with the value. There are two cases: 1) if Acq f reads the value of Rel f from

a quorum of replicas, the quorum of replicas that replied with the new value must in-

tersect with the quorum that has seen the DM-set (because of the release invariant),

and therefore Acq f is guaranteed to see the DM-set in the intersection replica. 2) if

Acq f reads the value of Rel f from fewer than a quorum of machines, then Acq f will

include a second broadcast round to write the value. In that case, it is guaranteed that

the second broadcast round of Acq f will begin only after the value of Rel f has been

written to at least one replica (which can only happen after the DM-set has reached a

quorum, i.e. release invariant), and thus the quorum of replicas reached by the second

round of Acq f must intersect with the quorum of machines that have seen the DM-set.

Case b: the release does not synchronize with the acquire. I.e., Acq f2 does not read

from Rel f1 . However, Rel f1
hb−→ Acq f2 implies that Acq f2 is at the end of a synchroniza-

tion chain of releases and acquires and Rel f1 is at the top of that chain; that chain must

include a release/acquire that saw the value written by Rel f1 , and only after it had seen

that value (and thus after the DM-set has reached a quorum of replicas), it created a

new value f2 that was read by Acq f2 . Therefore, it follows that by the time the value f2

can be read, the DM-set has already reached a quorum of replicas. The rest of the proof

then follows the same structure as when the acquire reads from the release (i.e., case

a).
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Lemma 4.4.4. If an Acq f2 of session-j discovers itself to be delinquent, then the next

relaxed access to key X will happen in the slow path.

Proof. A key X is accessed in the fast path, iff the epoch-id of key X is equal to the

machine’s epoch-id. If X’s epoch-id is smaller than the machine’s epoch-id then X

can only be accessed in the slow path. Accessing X in the slow path will advance

X’s epoch to what the machine’s epoch-id was, when the slow path access to X was

initiated. Therefore, X’s epoch-id can never be bigger than the machine’s epoch-id,

as the machine’s epoch-id is monotonically incremented, and X’s epoch-id only gets

modified to match a snapshot of the machine’s epoch-id.

Now assume that an acquire Acq f2 discovers it has been deemed delinquent and

thus it increments the machine’s epoch-id (transitioning to the slow path) before com-

pleting the acquire at time T1. It follows that at time T1, the machine’s epoch-id is

bigger than X’s epoch-id, because X’s epoch-id can only be advanced to the newly

incremented epoch-id, if it is accessed in the slow path after time T1. Therefore, if

session-j issues a relaxed access to X after Acq f2 , then it must be that X’s epoch-id is

smaller than the machine’s epoch-id, and thus X will be accessed in the slow path.

Having proved the lemmas above, we are now in a position to prove the load-value

axiom.

Lemma 4.4.5. For a write Wx, release Rel f1 , acquire Acq f2 and a read Rx such that:

Wx
so−→ Rel f1

hb−→ Acq f2
so−→ Rx, and if there is no intervening write to X between Wx and

Rx, Rx will read the value written by Wx.

Proof. First, we observe that Acq f2 cannot complete execution before Rel f1 begins

execution. (from Lemma 4.4.1). Then, we observe that since Wx
so−→ Rel f1 , it implies

that at least a quorum of acks for Wx must have been gathered before Rel f1 begins

execution. In a similar vein, since Acq f2
so−→ Rx, Kite ensures that Rx does not begin

execution until after Acq f2 has completed. Therefore, Kite must have gathered at least

a quorum of acks for Wx, before Rx begins execution. Therefore, this means that: if Rx

executes in the slow path it is guaranteed to read the value of Wx.

If Rx executes in the fast path, then it must be that Wx gathered an ack from the

machine that Rx executes from. On the other hand, if Wx could not gather an ack from

the machine that Rx executes from, then from Lemmas 4.4.2, 4.4.3, 4.4.4, it follows

that Rel f1 will have detected the DM-set and Acq f2 will have discovered its delinquency

transitioning into the slow path and thus the Rx would happen in the slow path and

would be hence guaranteed to read the value of Wx.
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4.4.5 Case 3: Slow path/Fast path transition

Once a session goes into the slow path and reads a key using ABD, Kite allows sub-

sequent relaxed accesses to that key to execute in the fast path. This is safe since

RC requires only that new values must be seen upon an acquire. As we already saw

in case 2, upon encountering an acquire, the acquiring session is guaranteed to learn

about its delinquency and increment its machine epoch-id, rendering all locally stored

keys out-of-epoch and thus guaranteeing that the next access to every key will happen

in the slow path.

When an acquire discovers its delinquency, it attempts to reset the delinquency

bits in remote machines, so that subsequent acquires need not be notified again for

the same missed messages. Thus, resetting delinquency bits is a best-effort approach

to prevent repeated redundant transitions to the slow path. To ensure correctness, we

must guarantee that the acquirer never resets a bit in a manner that can cause a consis-

tency violation. We identify two invariants necessary for safety and prove that they are

enforced.

First, a delinquency bit for a machine can be reset only after the machine has transi-

tioned into the slow path, i.e., only after its epoch-id has been incremented. Otherwise,

another racing acquire from the same machine (but different session) could find the

bit reset and go on to erroneously access a local key in the fast path. Second, a delin-

quency bit must be reset atomically by the acquire, i.e., between the time when the

session performs the acquire and resets the bit, the machine must not have lost a new

message. From the above, we infer the following two lemmas that must be enforced

by Kite.

Lemma 4.4.6. A delinquency bit for a machine is reset only after the epoch-id of the

machine has been incremented.

Proof. This is enforced by Kite’s actions. When an acquire discovers that the machine

is delinquent, it broadcasts a reset-bit message only after incrementing its machine

epoch-id.

Lemma 4.4.7. A delinquency bit that was observed by acquire Acqx will be reset iff

there has been no attempt to set the bit (by a racing slow-release) in between receiving

Acqx and its spawned reset-bit message.

Proof. Recall from § 4.3.2.1, that an acquire, upon detecting a set delinquency bit, it

transitions it to state T and tags it with its unique-id. Additionally, reset-bit messages
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carry the unique ids of their parents. When a reset-bit message is received, it resets the

delinquency bit iff the bit is in state T and the carried unique-id matches that of the bit.

On resetting a bit, all written unique ids are cleared. Finally, when receiving a slow-

release message, the relevant delinquency bits are unconditionally set to 1. Therefore,

any subsequent reset-bit message will be disregarded.

Remark. A delinquency bit can be detected by multiple acquires as each machine can

run many concurrent sessions, but each session can only have one outstanding acquire

at any given moment, as any operation that follows an acquire in session order, cannot

begin before the acquire completes. Therefore, the number of unique-ids that may need

to be stored with each delinquency bit is bounded by the number of sessions that can

run on a Kite machine.

Remark. The transient state T is not essential, as the clearing of all unique ids of a

bit on receiving a slow-release would have the same effect. Rather, state T is used for

convenience, as it simplifies the actions of resetting and setting a delinquency bit.

4.5 Methodology

We will measure Kite’s performance over our in-house 5-machine cluster (described

in Section 2.1.3). Similarly to prior work [79], we use KVS workloads with reads

and writes, including releases, acquires and RMWs. The KVS consists of one million

key-value pairs, which are replicated in all nodes. We use keys and values of 8 and 32

bytes, respectively which are accessed uniformly. Requests are issued from the client

threads over the Odyssey API. As application examples, we implement and evaluate

three lock-free data structures.

4.6 Evaluation

We have argued that Kite maximizes performance without compromising on consis-

tency, availability or programmability. Offering RC ensures that programmers can

achieve their required synchronization (consistency) in an intuitive way that they are

already familiar with (programmability). In this section, we focus on performance and

availability. Specifically, we first focus on the performance of Kite, demonstrating that

it can bridge the gap between strong and weak consistency (§4.6.1), second we will

test the performance offered by RC versus the MCL approach (§4.6.2), third we will
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Figure 4.6: Throughput in M. reqs/s of Eventual Store (ES), ABD, All-aboard and Classic

Paxos (CP). In ES and ABD the write ratio ranges from 1% to 100%. For CP and All-aboard

the workload is 100% RMWs.

show that Kite continues operating without interruption in the face of faults (§4.6.3)

and finally we comment on the correctness of the Kite design (§4.6.4).

4.6.1 Performance of Kite

We start by discussing the performance of Kite’s building blocks and how Kite can

match them and then dive into Kite’s performance when varying synchronization.

4.6.1.1 Kite building blocks

We start with Figure 4.6 that shows the throughput of the four protocols that comprise

Kite: ES, ABD, All-aboard and CP in million requests per second (M. reqs/s), when

varying the write ratio from 1% through 100%. Below we briefly discuss each protocol

denoting its throughput at 1% and at 100% write ratio.

ES: 765 to 96 M. reqs/s. ES is a decentralized per-key order protocol that provides

per-key SC. In ES reads execute locally with no communication, while writes require

only broadcasting the value. Because, neither reads nor writes can be executed in a

more efficient way, while maintaining that writes are replicated and offering per-key
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Figure 4.7: Throughput of Kite while varying synchronization.

SC, we consider ES as the upper bound of achievable performance. Kite executes

relaxed reads and writes with ES.

ABD: 118 to 61 M. reqs/s. ABD offers linearizable reads and writes, but not consen-

sus (i.e., it cannot execute RMWs). Kite uses ABD to execute releases and acquires.

As we also saw in the introduction of this chapter, there is a big gap between ABD and

ES. The gap increases in low write ratios. This is because reads are local in ES while

in ABD they require one broadcast round. (The second optional round of ABD reads

occurs in less than 1% of the ABD reads.)

All-aboard: 39 M. reqs/s. In Figure 4.6, all writes in All-aboard are RMWs (specif-

ically Compare-and-Swaps). All-aboard offers lower throughput than ABD writes,

because as we discussed in the previous chapter, All-aboard incurs the cost of solving

asynchronous consensus to execute RMWs. Kite can be configured to use All-aboard.

In that case, both releases and RMWs will be executed with All-aboard.

CP: 27 M. reqs/s. Similarly to All-aboard, in Figure 4.6, all writes in CP are RMWs

(i.e., Compare-and-Swaps). CP has a lower throughput than All-aboard because it

requires one more broadcast round. However, CP can be combined with ABD in order

to take advantage of its higher performance in workloads that have both release-writes

and RMWs. The default configuration of Kite uses CP to execute RMWs and ABD to

execute releases.
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Crucially, Kite can match the individual throughput of each of the four protocols

without adding any overhead. This means that Kite can be used as a per-key SC KVS

simply by only using the relaxed reads and writes. In this case, Kite matches the

performance of ES. Similarly, Kite can be used as a linearizable KVS with reads and

writes matching the performance of ABD or it can be used to perform only RMWs

matching CP or All-aboard. This is crucial, because by definition a general-purpose

KVS must be able to capture a wide range of use-cases.

4.6.1.2 Bridging the gap between strong and weak consistency

In this section, we study the performance of Kite in workloads that require both weak

and strong consistency, to demonstrate that Kite bridges the performance gap between

strong and weak consistency, by incurring a performance penalty only when synchro-

nization is used.

Figure 4.7 compares the throughput (in M. reqs/s) of seven workloads run over

Kite. In all workloads Kite is configured to use ABD for releases and CP for RMWs.

In addition, all RMWs have both release and acquire semantics. Each workload is

described through two percentages. The first percentage refers to the percentage of all

accesses that are RMWs. When that number is 100% then all accesses are RMWs.

Therefore, in the workload 100% - 0% (black, dashed) Kite executes only RMWs with

CP and therefore has the same performance as CP in Figure 4.6.

The second percentage refers to how many of the rest of the accesses are syn-

chronization accesses (i.e., releases/acquires). For instance, the workload 0% - 100%

(purple, dashed) has no RMWs but 100% of the accesses are releases and acquires.

Therefore, in this case Kite executes all accesses with ABD and therefore has the same

performance as ABD in Figure 4.6.

The first workload (0% - 0%, blue, dashed) has no synchronization, and thus all

accesses execute with ES, achieving the same performance as ES in Figure 4.6. In the

second workload (0% - 5%), 5% of accesses are releases and acquires (executing with

ABD) and the rest are relaxed, executing with ES. Kite is ideal for such a workload

that requires strong consistency primitives to achieve its synchronization, but most of

the accesses can be relaxed. Specifically, Kite significantly outperforms ABD for this

workload (4.4× at 1% write ratio and by 1.3× at 100% write ratio), while it comes

within 31% to 12% of ES.

In the rest of the workloads, we increase the synchronization ratios reaching the

the extreme scenario 50% - 50%, where 50% of all accesses are RMWs, and 50% of
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the rest (i.e., 25%) are releases and acquires. Naturally, as synchronization increases

Kite’s performance declines, approaching that of ABD and CP.

4.6.1.3 Summary

In summary, we showed that Kite can navigate the trade-off between consistency and

throughput by enabling applications to reap the benefits of strong consistency at a

performance that is close to ES. However, the performance of Kite depends on the

amount of synchronization used in the application. As synchronization increases, the

throughput of Kite gracefully degrades matching that of ABD and CP at the edge.

4.6.2 Comparing RC with MCL KVSes

In this section, we corroborate our claim in the introduction of this chapter, that

MCL KVSes cannot achieve the same level of performance as Release Consistency, be-

cause they cannot capture the ordering relation between strong and weak accesses. To

do so we compare Kite with the MCL approach over three widely used lock-free data

structures: 1) the Treiber Stack (TS) [41], 2) the Michael-Scott Queue (MSQ) [130,

131] and 3) the Harris and Michael List (HML) [71, 129].

We first describe the implementation of the three data structures in Kite then we

discuss how we estimate an upper bound of the MCL performance and finally we

compare Kite with the MCL approach.

Implementation. We use Treiber Stack (TS) as an example to describe the imple-

mentation of all three workloads. We set up 5000 TSs, replicated on the five Kite

nodes. In each node there are four client threads, running 200 sessions each, issuing

their requests to the workers (20 per node). Each session executes the ported TS code

(from [144], including the ABA counters) as follows: it randomly picks one of the TSes

and it performs a push and then a pop. When multiple sessions attempt to modify a TS

concurrently, their operations are said to conflict and must typically be retried. In order

to mitigate the conflict overheads, we leverage the weak version of compare-and-swap

(CAS), which can fail locally, if the compare fails locally (discussed in § 3.3.5).

MCL estimation. We estimate the upper bounds of the performance of an MCL KVS

as follows. First, we note that in all three workloads, both inserting and removing an

item in the structure require ordering between the accesses. For example, a TS push

requires a bunch of writes to create the item, followed by a CAS that actually pushes
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Figure 4.8: The performance of Kite and the MCL approach in millions of operations per

second for three workloads: Treiber Stack (TS), Michael-Scott Queue (MSQ) and Harris and

Michael List (HML).

the item in the stack. Crucially, while no ordering is required between the writes that

create the item, it must be that all the writes have completed before the CAS, such

that no other session can read an incomplete version of the item. As discussed in the

introduction of this chapter, to achieve this effect in an MCL KVS all writes, including

the CAS, must be “strong consistency” writes.

Therefore, we use ABD to capture the upper bound of MCL performance for the

three workloads. Specifically, we calculate the write ratio required in each workload

and based on the ABD throughput on that write ratio we calculate the maximum num-

ber of operations (i.e., inserts/removes) it can achieve in each workload. This estimate

corresponds to an upper bound for two reasons. First, we assume there are no conflicts,

which result in extra work to perform an operation (typically a retry). And second,

these workloads include RMWs (CASes), which are more expensive than simple ABD

writes. However, because ABD cannot execute RMWs, we assume RMWs are writes.

Comparison. Figure 4.8 depicts the performance in millions of operations per sec-

ond of MCL-estimate, Kite and Kite-no-conflicts over our three workloads TS, MSQ

and HML. Operations are inserts and removes to the data structures. Each operation

requires executing multiple requests (reads/writes etc.). Beyond the performance of
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Kite and MCL-estimate, we also plot Kite-no-conflicts, where we execute the work-

loads using Kite but without any conflicts. Kite-no-conflicts, serves to demonstrate

the upper bound of Kite and the performance drop due to conflicts. It also serves as a

comparison point against MCL-estimate, where there are no conflicts either.

As expected, Kite significantly outperforms MCL-estimate (2.3× - 1.56×). This

demonstrates that it does not simply suffice to offer multiple consistency levels at the

API. Rather, the API must be able to capture the ordering between synchronization

and non-synchronization accesses, such that it can maximize performance in common

synchronization patterns.

Summary. In this section, we demonstrated that the RC API can be used to increase

performance over the MCL API for common synchronization patterns, found in three

commonly used lock-free data structures. Notably, the benefits of RC are very well-

known and are the reason that the designers of ISAs (e.g., Arm, Nvidia, RISC-V) and

language (e.g., C/C++, Java, Rust) have been increasingly adopting RC over the past

twenty years. Building on their experience, we advocate for the adoption of RC in the

datacenter.

4.6.3 Failure Study

In order to study the behaviour of Kite when failures occur, we perform an exper-

iment where a replica sleeps for 400ms. Note that, forcing a process to sleep creates

a bigger challenge than simply killing it, as Kite must not only graciously handle the

replica being unresponsive, but also deal with its return to normal operation, when it

wakes up. Figure 4.9 shows the throughput over time in milliseconds (ms) of Kite

in conjunction with the individual throughput of a non-sleeping and a sleeping (for

400ms) replica during the run. Notably, all non-sleeping replicas have the same be-

haviour, so it suffices to just plot one of them. The workload used has 5% write-ratio,

0% of accesses are RMWs and 5% of accesses are synchronization (releases and ac-

quires).

We break down the run into stable and transitioning periods. There are two transi-

tioning periods for the sleeping replica; one that begins when its threads gradually get

to sleep (∼ 20ms) and another that begins when they start to wake up (∼ 420ms). The

stable periods are the three periods where the system throughput is steady, the pre-sleep

(0-20ms), the intermediate (60-420ms) and the post-sleep (after 460ms) periods.
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Figure 4.9: Failure study.

As expected in the pre-sleep and post-sleep periods Kite’s performance is the same:

68 M. reqs/s per machine, with a total of 342 M. reqs/s for all 5 machines. In the in-

termediate stable period, we see that although the overall performance of Kite slightly

drops (315 M. reqs/s) compared to the other steady states, the throughput per (opera-

tional) node increases (78.8 M. reqs/s) since the operational replicas are able to utilize

the network resources that the sleeping replica released.

Moreover, we observe that Kite always remains available and that its transitioning

periods are very small, in the range of tens of milliseconds. We also note that, although

the second transitioning period involves the slow-path, it is very short since each key

need only be accessed once in the slow path.

Time-out and Availability. As described in Section 4.3.2, when the replica sleeps, the

rest of the replicas block for the duration of a time-out, waiting for the sleeping replica

to ack their writes. That effect is visible on the non-sleeping replica’s throughput in

Figure 4.9. We implement the time-out with a software counter, and overprovision it

(∼ 1ms), such that it never gets triggered while in common operation. We note that

the time-out can be arbitrarily small, but it should generally be set with respect to the

system’s environment.

4.6.4 Kite’s correctness
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In this section, we describe our efforts to validate Kite’s correctness. We rely on

proofs to ensure that the specification of Kite is achieving the intended result and we

use testing to ensure that the implementation adheres to the specification.

Proofs. Firstly, in Section 4.4, we provided a proof for the fast/slow path mechanism

which we introduced in Kite. ABD, CP and All-aboard are all protocols that have

been proven correct. We have extended CP and All-aboard to execute RMWs. We

specify and prove our extensions in a technical specification that is complimentary to

this thesis [59].

Testing. To test the implementation of Kite we have taken the following steps. First,

we have a testing mode, that runs thousands of tests as Kite operates, including putting

machines/threads to sleep at random times for random intervals, to simulate failures

and asynchrony. Secondly, we have built a tool to check CP and All-aboard, by gath-

ering logs from all Kite machines checking several RMW-related invariants. Third,

applications such as the lock-free data structures, allow us to test both the control path

and the data path of Kite, by testing application-level invariants. Finally, we note that

using Odyssey increases confidence in various aspects of the implementation such as

the threading, the kvs-structure and the networking.

4.7 Related Work

Multiple Consistency Level Systems. There has been substantial research towards

providing a multiple consistency level (MCL) API [44, 79, 110, 145, 156, 157, 160,

166] and taming them [22, 35, 66, 68, 75, 76, 109, 132, 147, 155]. While promising,

we argue that merely labelling accesses (or objects) with their consistency level is not

sufficient; the API should allow for expressing the ordering relationships between the

strong and weak accesses. Taking inspiration from shared memory, we advocate the

adoption of RC for distributed KVSs.

Causal Consistency (CC). There has been substantial work in understanding, devel-

oping and optimizing protocols to enforce CC [18, 27, 50, 51, 118, 119, 123, 127]. CC

is the degenerate case of RC (but not RCSC), where all writes are releases and all reads

are acquires. Therefore, CC fundamentally cannot offer better performance than RC.

Software and Hardware DSMs. RDMA has sparked a recent resurgence in Soft-

ware DSMs [38, 93, 135], following seminal work in the nineties [40, 95, 113, 149].

Notably, Argo [93] targets DRF programs, while TreadMarks [95], Munin [40] and
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Cashmere-2L [149] all implement variants of RC. Traditionally, DSMs have tended to

focus on a simplistic “all or nothing” failure model [151]. Fast non-volatile memory

(NVM) has renewed interest on techniques [65, 81, 85, 139, 162] that ensure the con-

sistency of data resident in NVM upon a crash, in order to aid recovery [56]. Whereas

the above systems focus on durability, considering a failure model in which all pro-

cesses crash together, Kite focuses on availability, with a failure model in which indi-

vidual nodes can fail in a crash-stop manner.

4.8 Conclusion

In this chapter we presented Kite, a general-purpose, replicated KVS for the datacen-

ter, that maximizes performance without compromising on consistency, availability or

programmability.

Our contribution is the replication layer of Kite. Specifically, inspired from the

world of shared memory, Kite offers Release Consistency in order to bridge the perfor-

mance gap between strong and weak consistency. Kite employs four well established

protocols (Eventual Store, ABD, CP and All-aboard) to implement the RC API. To

enforce the barrier semantics of RC, we have presented (and proved) a novel fast/slow

path mechanism. The blocking fast path is leveraged in the common case for perfor-

mance, while the non-blocking slow path serves as a safety net to account for failures

and long delays.

We have shown that Kite maximizes performance for workloads that do not have

synchronization and thus do not need consistency. When synchronization is needed,

Kite’s performance reduces gracefully in proportion to the used synchronization. At

the edge case, when all accesses are synchronizing, Kite’s performance matches that

of the most performant strongly-consistent protocol.

Crucially, Kite does not compromise on availability: rather than blocking on a

failure or a delay, Kite reverts the offending machine (i.e., the “delinquent”) to the

slow path. If the delinquent machine has actually, failed, then the cost of the slow path,

need not be incurred at all. Finally, adopting the RC API ensures that Kite does not

compromise on consistency or programmability.
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Conclusions and Future Work

This thesis explored the design of the replication layer for general-purpose KVSes in

the datacenter. We argued that such a general-purpose KVS must offer the necessary

consistency semantics to implement synchronization (consistency) in an intuitive man-

ner (programmability), all the while avoiding any interruption to its operation in the

event of a failure (availability). Crucially, maximizing performance without compro-

mising any of these guarantees is challenging. This is because offering these guaran-

tees requires investing resources, that would otherwise be spent towards performance.

We tackled this challenge in two steps.

First, we characterized the performance of strong consistency semantics in the era

of modern hardware. Our characterization uncovered, not only which are the most ef-

ficient strongly-consistent protocols, but also which are the best practices for system

and protocol design for the datacenter. The artifacts of this study are Odyssey a frame-

work tailored towards protocol implementation for multi-threaded, RDMA-enabled,

in-memory, replicated KVSesand ten implemented protocols.

Second, we advocated the adoption of Release Consistency, to ensure consistency

and programmability. We designed a novel fast/slow path mechanism to enforce RC in

a highly-available and efficient manner. Using the Odyssey framework, and the charac-

terization of strong consistency semantics, we combined three cherry-picked protocols

with our fast/slow path mechanism to build Kite, a general-purpose, replicated KVS

that offers RC. We demonstrated that Kite can reap the benefits of strong consistency

with performance that is close to that of weak consistency, by paying the consistency-

associated performance penalty, only when the application performs synchronization.

87
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5.1 Critical analysis

In this section, we critically review our design decisions, with the benefit of hindsight.

We have argued that Kite has achieved the goals that we set in the introduction of this

thesis. To do so, however, we have introduced significant complexity at three levels.

Firstly, at the implementation level, we argued that the true limits of protocols are

uncovered only once all artificial bottlenecks are removed. This removal, however,

means that we had to build a lot of software infrastructure from scratch (in Odyssey),

paying the complexity cost that comes with using new software. At the protocol level,

we argued that decentralized, per-key order protocols achieve thread-scalability and

load balance, but at the cost of complexity, as there is neither a leader nor a total order

to help serialize writes. Finally, Release Consistency itself introduces complexity, as

it requires primitives with different consistency levels and the one-way barriers. Using

the fast/slow path mechanism increases complexity further, as it means we have two

different ways of enforcing RC, and we must correctly alternate between them.

The true cost of this complexity appears when maintaining or debugging a com-

plex system. We attempted to mitigate this cost in three ways. First, by using exist-

ing, proven protocols, second by thoroughly specifying and proving our own protocol-

level additions (e.g., the fast/slow path), and third by creating clean interfaces at the

implementation-level through the Odyssey framework. Crucially, Odyssey provides a

clean cut between system-level and protocol-level implementation. This cut greatly

helps navigate complexity as it isolates responsibilities. Reusing Odyssey to build

more protocols resulted in higher confidence in its correctness, which in turn facili-

tates maintaining and debugging the protocols.

Despite these efforts the fact remains that Kite is a complex system, whose main-

tenance may often require deep understanding of multiple complex protocol specifica-

tions.

5.2 Future work

In this thesis, we studied the replication layer of KVSes when deployed over manycore

servers, with big memories and RDMA-capable networks. However, there are many

other directions to advance the field of general-purpose, highly available KVSes, which

is why it remains a very active area of research. Below we briefly discuss some possible

directions and finally we discuss how this work can impact this future directions.
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Programmable network devices. Programmable NICs and switches comprise an im-

portant innovation, that can be used to accelerate parts of existing protocols or even

spark the design of new protocols [54, 83, 84, 108, 111, 112, 168]. In this thesis,

we saw that simply by introducing multi-threading, the performance relations of two

protocols can be inverted, because one protocol is thread-scalable while the other

not. Similarly, when introducing accelerating opportunities, we will need to care-

fully inspect the space of protocols in order to identify the types of protocols that are

acceleration-amenable.

Disaggregated memory. Another crucial development that can be leveraged by KVSes

is the adoption of disaggregated memory in the datacenter [11, 39, 67, 105]. Disag-

gregating memory implies that the kvs-structure is not local to each server anymore,

however, the server may use its own main memory to cache part of the kvs-structure.

Furthermore, disaggregation changes the failure model, as now compute and mem-

ory are no longer on the same failure domain, calling for the use of persistency tech-

niques [46, 69, 85]. Future work will have to face these challenges. We believe that

the insight presented on this thesis can prove useful in this effort.

Kvs-structures. In this work, we used the MICA kvs-structure for all of our sys-

tems as part of the Odyssey framework, so that we can focus on the replication layer

of KVSes. However, there is important work that can be done in the space of kvs-

structures. Memory disaggregation, new memory technologies and programmable

NICs, all call for the specialization of the kvs-structure in different ways to maximize

performance [28, 48, 152, 165, 167]. For instance, a new memory technology may

require accessing memory in different granularity, while programmable NICs may re-

quire synchronization between the CPU and the NIC’s FPGA. Specializing the kvs-

structure will be necessary to face these challenges.

Transactions. In the introduction of this thesis we limited the scope to the read/write

/RMW API. Incorporating transactions is a very promising future work. Distributed

transactions are admittedly a very challenging problem with a vast design space [49,

70, 88, 92]. However, we believe that a taxonomy and a performance characterization

for modern hardware, similar to our Chapter 3 for replication protocols, could greatly

improve the understanding of the space.

Geo-replication. Finally, in this thesis we considered KVSes deployed within the

datacenter. We believe that understanding the impact of modern hardware on the repli-

cation layer of geo-replicated systems is an important space for future work. Geo-
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replication implies that networking will be very slow and unreliable. Future work can

explore whether manycore servers with big memories can be used to accelerate repli-

cation by mitigating the networking problems.

Impact of future hardware. Our work has focused on modern hardware, raising the

question of whether it will remain relevant in the future. Admittedly the implementa-

tion artifacts of this work will become outdated as new hardware becomes mainstream.

However, the ideas presented in this thesis are not contingent on any specific hard-

ware component, but rather on the trend towards more parallel hardware. As emerging

hardware follows this trend, we believe that our research will remain relevant for the

foreseeable future.

Specifically, in this work we firstly explored protocol design in order to take advan-

tage of parallelism in compute, memory and network. As mentioned, we expect future

hardware to continue on this trend. Secondly, we advocated for Release Consistency

and showed how it can be efficiently enforced along with high availability. We expect

that the the benefits of RC will become even more pronounced with new and more

parallel hardware and that our protocol can be adapted for emerging technologies.
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