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ABSTRACT

This paper presents DLHT, a concurrent in-memory hashtable. De-
spite efforts to optimize hashtables, that go as far as sacrificing
core functionality, state-of-the-art designs still incur multiple mem-
ory accesses per request and block request processing in three
cases. First, most hashtables block while waiting for data to be
retrieved from memory. Second, open-addressing designs, which
represent the current state-of-the-art, either cannot free index slots
on deletes or must block all requests to do so. Third, index resizes
block every request until all objects are copied to the new index. De-
fying folklore wisdom, DLHT forgoes open-addressing and adopts
a fully-featured and memory-aware closed-addressing design based
on bounded cache-line-chaining. This design offers @ lock-free
operations and deletes that free slots instantly, @ completes most
requests with a single memory access, @ utilizes software prefetch-
ing to hide memory latencies, and @ employs a novel non-blocking
and parallel resizing. In a commodity server and a memory-resident
workload, DLHT surpasses 1.6B requests per second and provides
3.5% (12x) the throughput of the state-of-the-art closed-addressing
(open-addressing) resizable hashtable on Gets (Deletes).
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« Computing methodologies — Concurrent algorithms; « In-
formation systems — Data structures; Hashed file organiza-
tion.
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1 INTRODUCTION

Concurrent in-memory hashtables are essential and versatile data
structures in the modern cloud. They are responsible for storing and
accessing large amounts of data in main memory via thread-safe Get,
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Figure 1: Throughput of state-of-the-art hashtables and DLHT with
64 threads in a memory-resident workload (100M objects).

Put, Insert, and Delete requests. To ensure requests complete rapidly
as the dataset expands, hashtables must be also able to efficiently
Resize their index. In-memory hashtables serve a wide spectrum of
applications, including in-memory storage, online services, caching,
key-value stores, and transactional databases [4, 12, 13, 17, 41].

To meet the ever-growing performance demands [4, 14], state-
of-the-art hashtables from industry and academia offer designs that
attain close to a billion requests per second on a single server [10, 36,
38, 45, 47, 57, 60]. Problematically, their evaluation hints that such
high throughput is reachable only under cache-resident workloads
where accesses are served by hardware caches and seldom reach
main memory - i.e., due to small datasets [10], data partitioning [45,
57, 60], or highly skewed accesses [36, 38, 47]. So we pose the
following question: Can state-of-the-art in-memory hashtables attain
a billion requests per second under a memory-resident workload?

To answer this question, we evaluate eight state-of-the-art de-
signs over a memory-resident workload of 100 million objects ac-
cessed uniformly on a commodity server (details in § 4). As shown
in Figure 1, almost all hashtables are more than 2X slower than a bil-
lion requests per second. The most recent work, DRAMHIT [51], is
the only one close to the target (in Gets), but its open-addressing de-
sign hinders Deletes and Resizes. Hence, achieving a billion requests
per second without forfeiting core functionality on a commodity
server remains a challenge for memory-resident workloads.

In a deeper inspection (detailed in Table 1 and § 2), state-of-the-
art designs offer lock-free accesses but sacrifice core functionality,
incur multiple memory accesses per request, and block processing
in three cases. First, most hashtables stall processing on every re-
quest when accessing memory. Second, open-addressing designs
offer impaired Deletes that either cannot reclaim index slots or
must cease processing and rebuild the entire index to do so. Third,
those that support index Resizes block every request until all ob-
jects are copied to the new index. These stalling factors impede the
throughput of state-of-the-art hashtables, rendering them practi-
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cally blocking under memory-resident workloads.

In this work, we introduce DLHT, a concurrent hashtable that is
memory access aware and practically non-blocking (i.e., alleviates
stalling) to transcend a billion requests per second in memory-
resident workloads. Defying folklore wisdom [47, 51, 61], DLHT
forgoes open-addressing and adopts a closed-addressing approach.
Its design is based on bounded cache-line-chaining and has the
following features. First, it enables lock-free index operations, in-
cluding deletes with immediate index slot reclamation. Second, it
minimizes memory traffic and completes most requests with a single
memory access. Third, it exploits software prefetching to overlap
the memory latency of a request with productive work on other
requests. Finally, it incorporates a novel, non-blocking (but not
lock-free) Resize where requests complete with strong consistency
while a multi-threaded index migration occurs in parallel.

Unlike state-of-the-art designs that trade core functionality for
throughput [10, 15, 38, 47], DLHT provides a complete set of im-
plemented features to accommodate its clients’ needs. Beyond core
functionality, this includes namespaces, variable-sized key-value
pairs, efficient single-thread and hashset variants, as well as pointer
APIs that minimize copies.

We extensively evaluate DLHT on a commodity server using
micro-benchmarks, sensitivity studies, application examples, and
standard single- and multi-key OLTP benchmarks (YCSB, TATP,
and Smallbank). We compare DLHT with eight state-of-the-art
concurrent in-memory designs. DLHT surpasses 1.6B Get (1.4B In-
serts/Deletes, 1B Gets/Puts) requests per second. This is more than
3.5% (3x%, 2.7x) the performance of the fastest closed-addressing de-
sign and an order of magnitude faster Deletes than open-addressing
designs. Finally, the parallel and non-blocking resize of DLHT al-
lows for a population that is 3.9% faster than the state-of-the-art.
In short, the contributions of this work are as follows:

e We spot core performance and functionality features for
memory-resident hashtables and detail how state-of-the-art
concurrent hashtables fall short on those. (§ 2)

e We introduce DLHT, a closed-addressing hashtable that is
fully-featured and maximizes throughput via a lock-free bounded
cacheline-chaining design. DLHT minimizes memory traffic per
request, leverages software prefetching to mask memory accesses,
ensures good occupancy, offers fast Deletes that free index slots
instantly, and is equipped with a parallel and non-blocking index
resizing. (§ 3)

o We extensively evaluate the performance of DLHT on memory-

resident workloads over a commodity server. DLHT provides
1.66B requests/second and 3.5% (12X) the throughput of the state-
of-the-art resizable closed-addressing (open-addressing) designs
on Gets (Deletes). (§ 5)

2 MEMORY-RESIDENT HASHTABLES

In Table 1, we summarize two key performance features for hashta-
bles targeting memory-resident workloads: @ memory access aware-
ness and @ practically non-blocking operations. We break down
those features next and subsequently follow on why state-of-the-art
falls short on them.

A. Katsarakis, V. Gavrielatos, and N. Ntarmos

2.1 Key features for performance

Memory access awareness. This includes three guidelines. First,
the design must @ overlap accessing memory with useful work.
This can be achieved by software prefetching and then switching
to doing useful work, while memory is being accessed [21]. We
observe that once this is achieved, the bottleneck tends to shift
towards memory bandwidth. Therefore the second guideline is to
@ minimize the memory traffic per request. To do so, the design must
strive to approach the ideal limit of accessing a single cache-line
per request, while avoiding extraneous write-backs to memory (e.g.,
Gets should not write). This calls for designs where small values
are inlined inside the index and Gets are lock-free.

Reduced memory traffic can be achieved by prematurely resizing
the index. To ensure this is not the case, the third rule is that, given
a state-of-the-art hash function, the design must @ maintain high
occupancy - i.e., a high percentage of occupied to total slots before
a resize must be performed.

Practically non-blocking. A Get, Put, Insert or Delete to key
Ky is deemed to @ be practically non-blocking when its algorithm
guarantees that it does not impede the progress of any concur-
rent Get, Put, Insert or Delete to a different key K. The Resize
operation is deemed non-blocking when it does not block all other
operations until all objects are copied to a new index. The latter is
crucial for memory-resident workloads with hashtables that can
span gigabytes of data.

2.2 Shortcomings of state-of-the-art hashtables

From Figure 1, we focus on the five fastest concurrent in-memory
hashtables: MICA [38, 40], CLHT (lock-free) [10], GrowT [47],
Meta’s Folly [15] and DRAMHIT [51]. In Table 1, we show how
each design falls short on satisfying the performance features, by
handling memory accesses inefficiently, blocking excessively, and
even sacrificing core functionality.

Sacrificed functionality. As shown in Table 1, four out of five
fastest hashtables sacrifice Puts, Deletes, or Resizes. Moreover, only
MICA supports keys or values beyond 8 bytes (not shown Table 1).
CLHT assumes that values across different keys in the index are
unique. Notably, GrowT, Folly, and DRAMHIT are open-addressing
hashtables [25]. It is well documented that there is no cheap way
to perform Deletes in open-addressing [2, 20, 25, 31, 32, 53]. All
three (GrowT, DRAMHIT, and Folly) perform Deletes through tomb-
stones, which permanently occupy space in the index. These are
very fast, but will fill the index after a while. DRAMHIT and Folly
do not address that. GrowT moves all live elements to a new index,
incurring a large performance penalty (§ 5).

Memory access awareness. We observe that only MICA and
DRAMHIT overlap memory accesses with useful work. Detrimen-
tally, MICA does not inline values in the index, thus mandating
multiple memory accesses for a request, even for small values and
no collisions. DRAMHIT overlaps the memory accesses of a batch
of requests provided by a client. However, it performs the requests
of the batch out-of-order. Problematically, this can lead to errors in
some use cases (e.g., deadlocks in § 5.3.3). Finally, CLHT has low
occupancy, as it cannot chain buckets and must Resize after any 4
collisions.
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Practically non-blocking operations Memory access awareness
Resizes Overlaps Minimizes Occupancy
Deletes . . .
Collision (non-blocking: | memory accesses memory traffic  until resize
Gets Puts Inserts (that free
handling . safe Get,...Del (i.e., exploits (e.g., supports (from § 5.1.5
index slots) . . . o .
during resize) s/w prefetch) index inlining) ~ with wyhash)
Blocking Parallel
GrowT open-addressing 4 4 4 (until all index H‘u‘ll _k ’ X 4 30-50%
3locking
is transferred) oo
Folly open-addressing v 4 4 X X X v —
DRAMHIT | open-addressing v Only upserts X X v Reorders requests v —
MICA closed-addressing v Blocking Blocking X v X —
. Serial,
CLHT closed-addressing | Unique values X 4 v X 4 1-5%
Blocking
DLHT closed-addressing v v v v v v v 61-72%

Table 1: Key features for memory-resident performance across state-of-the-art concurrent in-memory hashtables and DLHT.

Practically non-blocking. MICA adopts a blocking lock-based
scheme for updates. In contrast, CLHT, GrowT, and Folly support
lock-free index modifications. DRAMHIT offers lock-free Gets and
Upserts, but an application cannot express a pure Put or Insert.
DRAMHIT, GrowT, and Folly struggle with non-blocking Deletes,
as previously discussed. Finally, only CLHT and GrowT can grow
on-demand but come with a blocking resize, during which all index
operations are stalled.

3 DANDELION HASHTABLE (DLHT)

This section describes the design of DLHT, which addresses these
shortcomings. First, we present the architecture of DLHT (§ 3.1)
and its core algorithms (§ 3.2). Then we detail how DLHT overlaps
memory accesses (§ 3.3) and discuss its extra features, including
the iterator and namespaces (§ 3.4).

3.1 Architecture and terminology

In this section, we describe the architecture of DLHT (shown in
Figure 2) and the basic terms we use throughout the paper.

Index. The index is an array of bins.

Bin. A bin is a chain of buckets. Each chain can have up to four
buckets. Initially, each bin is comprised of a single (primary) bucket.
There is an additional array of link buckets, which can be chained
to a bin when needed. There is only a small number of link buckets
(by default 8 times fewer than the bins), ensuring that at any time,
most bins only have a single bucket - the primary bucket. When we
run out of link buckets, we trigger a non-blocking resize (§ 3.2.5).

Bucket (64B). A primary bucket has an 8-byte bin header followed
by 8-byte link metadata and three 16-byte slots for key-value pairs.
Link buckets just have four 16-byte key-value slots. Buckets are
always cache-line aligned.

Bin Header (8 B). The first 8-bytes of a primary bucket is the
bin header, which stores concurrency metadata. It contains a 32-bit
version, a 2-bit bin state, and a 2-bit state for each of the 15 slots
- i.e., for the primary bucket and up to three link buckets per bin.
Fitting that metadata in 8-bytes enables non-blocking operations
(e.g., Inserts or Deletes) in the bin via compare-and-swaps (CASes)

on the header. In later sections, we detail how these pieces are used.

Link Meta (8 B). The second 8-bytes of a primary bucket contains
two 32-bit link-bucket indexes, which are used for chaining up to 3
buckets from the link bucket array to the bin. The first index chains
one bucket while the second index chains two (consecutive in link
array) buckets to the bin.

Slot (16 B). A key-value pair slot comprises two consecutive 8-byte
segments, one for the key and one for the value.

DLHT has three modes of operation. Each mode uses the slot dif-
ferently and offers a slightly different APIL The three configurations
are a result of DLHT’s real-world use cases.

1. Inlined. In this mode, key-value pairs are stored in the slot,
i.e., they are inlined. Keys and values must be at most 8 bytes, so
that they can both fit in their respective positions inside the slot.
The Inlined configuration is extensively used by DLHT clients. Two
examples of these use-cases are: @ a pointer cache in a query
processing engine, @ a map between 4- to 8-byte pointers for a
database storage engine.

2. Allocator. In this mode, we allocate additional memory to store
a key-value pair. This mode is used when either the key or the value
is larger than 8 bytes. The value is always written in the additional
memory, and the slot contains a pointer to that memory, instead of
the value. If the key is not larger than 8 bytes, it fits in the slot and
is not stored externally. When the key is larger than 8 bytes, the
slot stores its 8 least significant bytes (for filtering). In this mode,
DLHT takes an allocator as input, as in C++ containers. This mode
is used as a primary index by a database storage-engine.

3. HashSet. DLHT can be configured as a HashSet, which does
not store values, only keys. The restriction is that keys must be at
most 8 bytes to fit in the slot. The HashSet mode is currently used
for semi-/anti-joins and by a database lock manager to lock records,
where an insertion of a key, locks one or more records, which are
released by deleting the key.

Notably, DLHT is suitable for more use-cases than those men-
tioned above. We further discuss some in § 3 and § 5.
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Figure 2: DLHT layout: bins composed of a primary bucket (a bin header and 3 slots) and up to 3 extra linked buckets (4 slots each).

3.2 Algorithms

In this section, we detail the core algorithms of DLHT, which are
practically non-blocking, minimize memory accesses, and ensure
the strongest consistency (i.e., linearizability [26]). We focus our
discussion on the Inlined mode, and at the end of each algorithm,
we note the changes for the other modes.

3.2.1 Get: lock-free + ~ one memory access + ptr API

A Get first hashes the key to retrieve a bin. With closed-addressing,
there is a one-to-one relation between a key and a bin: if the key
is not in that bin, then the key does not exist in the index. The
Get does a linear search over all filled slots of the bin. In the worst
case, it searches all 15 slots over four buckets. Most commonly, the
key hashes in a single-bucket bin; thus, the entire operation only
costs a single memory access. When the key is hashed in a bin with
more buckets and is not found in the first bucket, a second memory
access is required to fetch the second bucket, and so on.

We use the version of the bucket to read a consistent view of the
slot. Specifically, we first read the version of the header, then the 2-
bit slot state, the slot, and then again the version. This is a common
technique to implement lock-free reads, used in seqlocks [33] and
other non-blocking algorithms [58].

Allocator. In Allocator mode, the slot stores a pointer instead of
the value. Additionally, in Allocator mode, keys can be larger than
8 bytes; if so, they are stored inside the allocated memory. In this
case, we must dereference the pointer to read the key as part of the
concurrency algorithm.

Allocator pointer API. In Allocator mode, we offer a pointer
APIL where a Get returns a pointer to the value and there is no
Put. Rather, the Get is used to modify the value. The alternative
would have been a Get/Put API, where a Get returns the value
and Put overwrites it. We choose the pointer API because of three
scenarios: @ when the new value depends on the old value @ when
only a small part of the value needs to be updated and @ when
the concurrency scheme can be optimized using context-specific
information. Puts that blindly lock and overwrite the entire value
would incur unnecessary copies or index probes in those cases.

HashSet. Gets return only if a key exists, as it has no values.

Bounded chaining. Recall from the previous section that the
default number of available link buckets is 8 times smaller than the
bins. This ensures that the average number of memory accesses per
Get is bounded and remains close to one.

Summary. DLHT ensures that most Gets require only one mem-
ory access and no write-backs. We implement this with a well-
established lock-free algorithm. In Allocator mode, Gets return

a pointer to the value. This can be used to efficiently implement
custom modification algorithms.

3.2.2 Insert: a la CLHT + bounded chains + shadow API

A bin can have up to 15 slots across four chained buckets. The
header of the bin stores a 2-bit state for each slot. This 2-bit state
can take the values of Valid, Invalid, and TrylInsert. An Insert first
checks that the key is not already present, then picks an empty
(i.e., Invalid) slot to insert, fills the slot, and changes the state of the
slot to Valid.

From a concurrency perspective, the challenge is to ensure that
there can never be two successful Inserts for the same key given
that two Inserts may work on two different slots. We solve this
using the CLHT lock-free algorithm. The key idea is to use the bin
header as the synchronization point. This is possible, despite a bin
in DLHT having up to four buckets, as all slot states are packed
together in the same 8-byte word. Specifically, Inserts CAS the
bin header to change the state of a single slot. CASing the header
ensures the atomicity of the Insert with respect to other operations
(Inserts/Deletes) on the same bin. Notably, because the slot and its
state are on separate words, we must perform the Insert in two steps,
using an intermediate state called TryInsert. The Insert algorithm is
as follows.

Algorithm. @ Read the bin header. @ Run the Get algorithm, if
the key already exists return its value along with the corresponding
flag. @ Otherwise, find the first slot that is in Invalid state. If no
slot can be found, trigger a resize. @ CAS the header to transition
the state of the slot from Invalid to TryInsert. @ If successful, fill
the slot. @ If unsuccessful, start over. @ CAS the header again to
transition the state of its selected slot from Trylnsert to Valid. If
unsuccessful we start over from step 1, but we skip steps 3 and 4.

This algorithm ensures that there can never be two successful
Inserts for the same key, as only one can succeed in step 5; the
other start over and search the bin for the key (step 2), where it
will find the successful Insert. Also, recall that the header has a
32-bit version. The version is incremented with every CAS. This is
required by the Get algorithm, but also protects from the notorious
ABA bug [58].

Chaining buckets. After transitioning a slot to TrylInsert state
(step 4), it is possible that this slot is on a bucket that has not been
chained yet. In this case, we first atomically allocate a link bucket
(or two consecutive link buckets) through a Fetch-And-Add and
then chain it (them) to the bin with a CAS on the link header —
setting the appropriate link-bucket-index. If no link buckets are
left, we trigger a resize.



DLHT: A Non-blocking Resizable Hashtable with Fast Deletes and Memory-Awareness

Allocator. When in this mode, the Insert algorithm allocates
memory in step 4.1 (after transitioning the slot state to Trylnsert).
Note that it is possible for the Insert to fail after the allocation,
either because another thread has just inserted the same key, or
because the bin ran out of slots. In both cases, we free the allocated
memory, before continuing.

HashSet. The algorithm skips all actions related to values.

Transactions. Often transactional protocols have two rounds,
@lock some objects and @ commit (or abort) [23]. With the pointer
API, locking can be implemented by embedding a lock inside each
object value. However, this is not possible for Inserts, as the values
do not yet exist in DLHT. To solve this, the client could implement
locking through an additional HashSet. To avoid this overhead,
we offer two additional API calls: The first is a shadow Insert that
inserts the key but keeps it hidden from Get/Put/Deletes, essentially
locking it. Internally, the only difference of the shadow Insert is
that it transitions the inserted key to a Shadow state instead of the
Valid state (in step 5). Later the transaction commits or aborts the
shadow Insert using an API call with a corresponding argument,
which transitions the slot state to Valid or Invalid.

Summary. DLHT uses a variant of CLHT’s lock-free Inserts. In the
common case, an Insert requires a single memory access, and two
CASes on the bin header. The Insert is also responsible for chaining
buckets and allocating memory. Finally, we offer optimized Inserts
for transactional protocols.

3.2.3 Delete: lock-free + immediate slot reclaim

Unlike open-addressing designs, DLHT instantly reclaims slots on
Deletes. To delete, we search the bin to locate the matching slot
and CAS the header to change the state of the slot from Valid to
Invalid. Hence, Inserts can reuse the slot.

Allocator. In the Allocator mode, DLHT stores pointers in the
slots instead of values. Slots are again instantly reused. To free the
pointer after a Delete, we offer an epoch-based GC, for which the
client can opt-in. Our GC remembers the pointers that must be
freed. The client periodically performs a call from all threads to
advance the epoch. After moving to new epoch, our GC frees the
pointers of the previous epoch.

HashSet. The Delete is the same as in the Inlined mode.

3.2.4 Put: dw-CAS + transfer keys

We offer a Put only for the Inlined mode. We implement Puts using
a double-word CAS (dw-CAS) on the slot. Specifically, the client
provides a key and the new value to be written. We first execute
the Get algorithm to find the corresponding slot. We then use the
value that we just read to dw-CAS the entire slot, with the value
provided by the client.

It is possible that between reading and dw-CASing, the slot gets
deleted and then reused by a subsequent Insert of another key. In
this case, the dw-CAS ensures that the Put will either overwrite the
entire slot before the Insert, or fail.

Besides concurrent Inserts and Deletes, we must also handle
non-blocking Puts racing with an index Resize. It is important that
no Put succeeds in the old index after its slot has been copied to the
new index. Otherwise, it would be hard to guarantee linearizability.
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A straightforward solution to this problem, is reducing inlined keys
(or values) to 63 bits and requiring the resize algorithm to set this
one bit before a transfer occurs. To avoid sacrificing this bit in every
slot, we use the idea of transfer keys that we discuss in § 3.2.5.

Allocator & HashSet. In Allocator there are no Puts. Instead Gets
return pointers for updates (discussed in § 3.2.1). In HashSet mode,
there are no values and hence no Puts.

3.2.5 Resize: parallel growing + concurrent operations

An index resize is triggered by an Insert when either all slots of a
bin are used or there are no more link buckets to chain to the bin.
The resizer, i.e., the thread triggering the resize, executes the entire
resize algorithm and then it performs its Insert in the new index.
Resizing has three steps: @ allocate a new index, @ transfer all keys
to the new index, and @ GC the old index. Crucially, resizing does
not block other threads from executing their requests. If another
Insert also triggers a resize, then it joins the effort of resizing.

Allocating new index. The growth factor varies from 8 when
the index is small (e.g., < 4K bins) to 4 for medium-sized indexes
(e.g., < 64M bins) to 2 for larger sizes. The resizer is responsible to
allocate the new index.

Transfer. The index is partitioned into chunks of 16K bins. This
allows threads to collaborate with minimum synchronization. Each
collaborating thread (resizer or not) picks a not-yet-transferred
chunk and transfers it. We detail this collaboration later in this
section. To transfer a chunk, we iterate through all bins, and for
every valid slot in a bin we: @ read the slot; @ replace the key in
the old index with a transfer key; and @ insert the key into the
new index.

Practically non-blocking operations. Instead of blocking all
operations for the duration of the resize, we only block operations
at a bin granularity for the duration of a bin transfer. Recall that
each bin has a 2-bit bin state in its header. The bin state can be
in NoTransfer (initial state), InTransfer, or DoneTransfer. Before
transferring the bin, we CAS the header, setting the bin state to
InTransfer. Once the transfer of a bin is done, we set the bin state
to DoneTransfer.

All index operations first check the bin state. If it is InTransfer
they wait until it reaches DoneTransfer. If it is DoneTransfer, they
perform the operation in the new index. Note that CASing the bin
state of the header ensures that all concurrent Inserts and Deletes
will either take place before the transfer begins, or will fail and be
retried in the new index. A Get also reads the header to complete
a slot read and is similarly retried if the bin state is other than
NoTransfer.

Puts read the header in the beginning but do not re-read or CAS
the header afterwards, only dw-CAS the slot. For this reason, the
resize algorithm also replaces the key of the slot with a transfer
key, before transferring the slot. A transfer key is a key that can
never be hashed in the targeted bin. Our implementation uses one
key for odd and another for even bins. This ensures that either
the transfer will see the Put, or the Put will fail, encountering the
transfer key. In the latter case, the Put is retried and will find the
bin in InTransfer or DoneTransfer. It will wait for the transfer to
complete if needed and then it will be performed on the new index.
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Collaboration. When a thread tries to trigger a resize while a
resize is in progress, it becomes a helper. Helpers first wait for the
new index to be allocated. Then they start transferring any available
chunks of bins until there are no more chunks to transfer. Finally,
they execute their Insert in the new index.

GC old index. Once the transfer is done, the resizer updates the
index pointer, ensuring that all new requests use the new index.
Now, the resizer needs to wait for all threads that have read the
old index pointer and are still executing a request, to finish their
request. To do this, we mandate that threads notify each other when
finishing a request. We implement this with a per-thread pointer.
When a thread enters DLHT (e.g., on a Get), we set the pointer to
the current index. Just before the thread leaves DLHT, it sets the
pointer to null. Once none of the pointers point to the old index,
the resizer can GC it. The overhead is two atomic store instructions
per request (per batch in practice - § 3.3). Crucially, no programmer
intervention is required.

Summary. Resizes only block operations on a single bin at a time.
Bin transfers are parallel with minimal synchronization. We GC
the old index, without programmer intervention.

3.3 Overlapping memory latencies with useful
work

A side-effect of hashing is that accesses to the index do not follow
any specific pattern, nor do they exhibit any locality. This renders
hardware techniques ineffective: the processor will block on every
request waiting for main memory [21]. Software prefetching can
be used to tolerate these latencies, either by batching requests or
by using coroutines.

Batching. DLHT offers a function that executes an array of re-
quests (i.e., a batch) while respecting the requested order. Before
executing the requests, DLHT loops through the array and issues
software prefetches for the bin of each request. This overlaps the
memory latencies of all requests in the batch. The technique is
inspired by MICA [41]. Unlike MICA, our pointer-based API also
allows us to prefetch the externally stored values in Allocator mode.

In some software stacks, batching occurs naturally. For instance,
one of our clients implements distributed transactions over DLHT,
where each network packet contains multiple requests for different
keys. Instead of looping through the network packet issuing re-
quests one-by-one, the client packages them in a batch, reaping the
benefits of DLHT batching. Note that it may be crucial to respect
the order of requests in this and similar scenarios, as locks might
need to be grabbed in order to avoid deadlocks (e.g., as in § 5.3.3).

DLHT accepts different request types (i.e., Get, Put, Insert, Delete)
on the same batch, respects their order, and amortizes the cost
of the index GC (two atomic stores) across the batch. Moreover,
DLHT offers the option to terminate the execution of a batch on an
operation that does not complete successfully. For example, if an
application-level lock cannot be grabbed because a key does not
exist, DLHT will not perform any subsequent requests of the batch.

Coroutines. Some software stacks make the use of batching
challenging. In this case, coroutines can be used alternatively to
mask memory latencies [24]. To interoperate with coroutines, we
offer a function that prefetches the bin of a key. The client calls
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this function prior issuing a request to DLHT, placing a yield in
between. Consequently, the client can do useful work, while the
bin is fetched from memory.

3.4 Additional features

DLHT has been in use for several months. During this time, we
have accommodated numerous new features. We detailed some in
the previous section, e.g., DLHT’s three modes of operation (§ 3.1).
We briefly discuss others next. When a feature incurs a performance
penalty, the client must explicitly opt-in, such that clients only pay
for the features they need.

3.4.1 Variable size keys and values (in a single index)

A client can configure DLHT to hold key-values of any size. This
allows having one DLHT instance for different object types and
facilitates batching. For instance, the client may insert a 2-byte key
with a 5-byte value and a 128-byte key with a 1024-byte value. This
feature is available in Allocator mode — the only mode where keys
can be larger than 8B. When this feature is enabled, we store the
key and value sizes in the allocated memory of each key-value pair.

This poses a performance challenge. For inlined keys (i.e., at
most 8 bytes), dereferencing the pointer would double the cost of a
Get. Recall that each slot, has 8 bytes for the key and 8 bytes for
the value. But in the Allocator mode, we store pointers instead of a
value. As pointers only use 48 bits, we safely overload the 16 most
significant bits (MSBs). We use the four MSBs for the key size (the
rest are used in § 3.4.2). Four bits suffice, as keys larger than 8 bytes
anyway need to dereference the pointer, which stores the key size.

3.4.2 Namespaces

When using a single DLHT instance to accommodate different
types of keys (e.g., keys from different database tables), it is possi-
ble that keys have name conflicts. To address this, we introduced
namespaces. Specifically, clients can tag a key with a namespace-id,
which is an integer that can range from 0 to 4Ki. Keys with different
namespace-ids do not conflict inside DLHT. We allow for 4Ki differ-
ent namespaces, as we overload the 12 remaining most significant
bits (MSBs) from the pointer inside the slot (as discussed in § 3.4.1).

3.4.3 Hash functions

The default hashing algorithm is a simple modulo operation:
bin_id = key % number_of _bins

DLHT can also be configured to use wyhash[64]. We benchmarked
many of the most prominent hash functions, including CityHash,
xxHash, Murmur3, and FNV1. We found that wyhash provides the
most favorable trade-off between performance and randomness.
We chose not to include these benchmarks in the paper, as they are
orthogonal to DLHT.

3.4.4 Iterator: weak and strong snapshots

We offer an iterator API that allows the client to iterate through
all of DLHT’s key-value pairs. The iterator tracks its current index
position. A Next() function fetches the next pair until it has iterated
through all bins. We provide a strongly-consistent snapshot for the
iterator via an index migration (i.e., a "resize" to a same-size index)
that temporarily stalls updates — until transitioning all bins to a
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Commodity Server

Two-socket 18-core Intel Xeon Gold 6254
72 h/w threads in total (incl. hyper-threads)

Hardware Caches

36x 1MB L2 | 2x 24.8MB L3

System Memory

8x 32GB DDR4-2933 (256GB in total)

OS / Kernel

Ubuntu 20.04.3 | Linux 5.4.0-90-generic

(Source Code of)

Evaluated Baselines

CLHT [62], MICA [40], GrowT [46], Leapfrog [55],
DRAMHIT [56], Folly [15], Cuckoo [16], TBB [29]

Software Threads

1,2,4,8, 16,32, 64,71

Key Size, Value Size

Fixed/Variable | 8B, 16B, ..., 1.5KB

Hash Function

modulo, wyhash

Allocator

mimalloc (2MB pages), malloc

Number of Bins

16K, .., 67M (index size = 4GB), .., 1B (64GB)

Number of Keys

16K, ..., 100M, ..., 1B, 1.6B

Resizing

disabled, enabled

Access Patterns

uniform, skewed

DLHT modes Inlined, Allocator, HashSet
Batching disabled, batch-size = 1, 2, ..., 32, 64, 128
Workloads/ 1. Get, 2. InsDel, 3. PutHeavy, 4. Resizing,

Application scenarios/

Benchmarks

5. Single-thread, 6. Lock manager, 7. CXL emul.
8. YCSB, 9. TATP and Smallbank, 10. Hash Join

Table 2: Experimental configuration (default values in bold)

Snapshot state. However, our clients prefer a weakly-consistent
snapshot that is non-blocking and does not need a migration.

3.4.5 Single-thread: synchronization-overhead-free

A client can opt-in to use DLHT with only a single-thread. DLHT
includes three sources of overhead for thread-safety: @ lock-free
algorithms, @ checking for concurrent resizes, and @ notifying
other threads when entering/leaving DLHT. When configured for a
single thread, we completely remove the second and third overheads.
To alleviate the first overhead, we convert every CAS into a regular
store, and downgrade atomic loads/stores into regular loads/stores.
We also tried replacing the lock-free algorithms with simplified
single-threaded algorithms, but the gain was negligible, and thus
we abandoned that avenue.

3.4.6 Summary

At the request of its clients, DLHT offers variable-size keys/values,
namespaces, a sophisticated hashing function, an iterator API, and
single-threaded optimizations. The features that incur a perfor-
mance penalty are disabled by default.

4 EXPERIMENTAL METHODOLOGY

Table 2 summarizes the testbed, the evaluated hashtables, and the
variables we study in our evaluation. Unless stated otherwise, the
experiments use the default values (bold in Table 2). We next clarify
aspects that do not fit in the table.

Testbed. We conduct the experiments on a server with two 18-core
CPUs and two threads per core (72 hardware threads in total). We
spare a thread for the OS; thus, the hashtables use up to 71 threads.
Across all experiments and for all hashtables, we pin threads as
follows. When running fewer than 18 software threads, we pin
them all in the first socket. When running between 19 and 36, we
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CLHT the lock-free variant of CLHT [10, 11]

MICA the CRCW variant of MICA2 [38, 39]

GrowT the uaGrowT variant of GrowT [47]

Folly the atomic hash map of Meta’s Folly [15]
Cuckoo the concurrent Cuckoo hash map [17]

Leapfrog Leapfrog map of Junction’s library [54]

TBB the concurrent hash map of Intel’s OneTBB [29]
DRAMHIT a lock-free non-resizable map (concur. work) [51]
DLHT(-NoBatch) | asin § 3 (without batching - § 3.3)

Table 3: Summary of evaluated Hashtables.

balance them among the two sockets. When running more than 36,
we use hyper-threads and again balance them among the sockets.
By default, we run experiments using 16 threads with 8-byte keys
and 8-byte values inlined in the index. We typically use a simple
modulo operation for hashing. Otherwise, we use wyhash [64].
We preload the mimalloc allocator [49] and configure it to use
(2MB) huge pages. We chose wyhash and mimalloc after extensive
experimentation with the available hash functions and allocators.
For a fair comparison, we use the same allocator and huge pages
in all hashtables. When threads are pinned in both sockets, we
interleave the bins of the index across both sockets. Unless stated
otherwise, we instantiate DLHT, with 67 million bins, 8.3 million
chained buckets, and we disable resizing. Before beginning the
experiment, we populate the hashtables with 100M keys.

Workloads. As shown in Table 2, we have two default workloads:
1) Get with 100% Gets and 2) InsDel with 50% Inserts and 50%
Deletes. To execute a Get (similarly a Put), we first select one of the
prepopulated keys uniformly at random, using a random-number
generator (RNG). Inserts also use the RNG to select a key, but they
choose a key that has not been prepopulated. This ensures that
Inserts will always incur the full overhead of the insertion. In the
InsDel workload, an Insert is always followed by a Delete to the
same key. Details on non-default workloads are provided inline
within each corresponding experimental discussion.

5 EVALUATION

In this section, we first, compare DLHT with state-of-the-art hashta-
bles and test our hypotheses (§ 5.1). Then we perform sensitivity
studies over DLHT (§ 5.2) and investigate its performance on bench-
marks and applications (§ 5.3).

5.1 Claims and comparison with state-of-the-art

In the introduction, we argued for the opportunity to achieve a
billion requests per second on a memory-resident hashtable whose
requests require main memory accesses. We claimed that state-of-
the-art concurrent in-memory hashtables are unable to reach this
goal due to excessive blocking and inefficient handling of memory
accesses. Finally, we argued that state-of-the-art designs either lack
or offer impractical support for core operations (i.e., Put, Delete, or
Resize). In this section, we set these hypotheses to the test.

Evaluated Hashtables. In this section, we evaluate eight state-
of-the-art concurrent in-memory hashtables (baselines) and two
variants of DLHT (shown in Table 3). We ensure all hashtables
are measured with the default configuration of Table 2. Note that
almost all baselines only support up to 8-byte values. Therefore,
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we use 8-byte values in this subsection. We extensively explore
different sizes and configurations of DLHT in the subsection with
sensitivity studies (§ 5.2).

For simplicity, we mainly focus on comparing with GrowT,
DRAMHIT, Folly, CLHT, and MICA, as these are the fastest base-
lines. We analyzed the features of these hashtables in Table 1. In
short, GrowT, DRAMHIT, and Folly are open-addressing designs.
Folly does not support Resizes or Deletes with slot reclamation.
GrowT offers parallel but blocking Resizes and impractical Deletes
that must perform a blocking transfer of all objects to a new index to
reclaim index slots. The lock-free variant of CLHT, assumes unique
values, does not support Puts, and cannot chain buckets. The latter
limits collisions to one cache-line (i.e., three objects), after which
it performs a Resize that problematically is blocking and single-
threaded. MICA uses software prefetching for its memory accesses
but is lock-based, lacks support for Resizes, and cannot inline keys
and values inside its index. Thus, MICA needs at least two memory
accesses to access or update a value and incurs (de)allocation over-
heads on all (Deletes) Inserts. Finally, DRAMHIT is the only design
that combines frugal memory accesses and prefetching like DLHT.
However, DRAMHIT lacks Resizing, its Deletes cannot reclaim in-
dex slots, its Puts (Inserts) may silently insert (update) key-values,
and its batching may reorder a client’s requests.

5.1.1

Figure 3 illustrates the throughput of the Get workload in million
requests per second (M. reqs/s) as we vary the number of threads.
Our DLHT implementation outperforms all baselines, offers beyond
1B Gets/s, and scales almost linearly up to 32 cores across both
available sockets. With hyper-threading enabled (i.e., 64 and 71
threads), DLHT saturates the memory bandwidth and peaks at
1.66B Gets/s. Its high performance mainly stems from serving each
Get with a single, prefetched memory access and no write-backs.
In contrast, (DLHT-NoBatch,) GrowT, Folly, and CLHT can serve

Get throughput and power-efficiency

Figure 7: Avg. Population throughput: Insert-
ing 800M keys over a growing index.

Threads time (seconds)

Figure 8: Gets, Inserts, and Non-blocking Re-
sizing (transfer of 800M keys) in DLHT.

Gets with a single memory access but do not leverage prefetch-
ing. Thus, they are over (2.2x) 3.5x slower than DLHT. Similarly,
MICA uses prefetching, but its non-inlined approach requires at
least two memory accesses for every Get, resulting in up to 4.8X
lower throughput than DLHT. DRAMHIT, which combines an in-
lined index with software prefetching, is only 1.7X slower than
DLHT. However, unlike DLHT, DRAMHIT may reorder the exe-
cution of requests inside a client’s batch. We partially attribute
DRAMHIT’s lower performance to the design that does not let ap-
plication threads to directly access the hashtable and the overheads
of its asynchronous engine (e.g., producer-consumer queues).

Finally, Cuckoo, TBB, and Leapfrog mandate more than one
memory access and do not use prefetching; hence their throughput
is below 250 M. reqs/s. For simplicity, we omit those baselines
from the rest of our graphs and focus our comparisons on GrowT,
DRAMHIT, Folly, CLHT, and MICA.

Figure 4, shows the power efficiency on the Get workload in M.
reqs/s per watt. The power efficiency of DLHT sees a steady increase
up to 32 threads and peaks at 3.35M. reqs/s per watt, which is up
to 1.7X higher than (the non-resizable) DRAMHIT and 3.6X higher
than (the resizable) GrowT, the two most efficient baselines on Gets.
In short, DLHT fulfills its purpose. It offers substantially higher
throughput than the competition, surpassing 1.6B requests per
second with its memory-access-aware design without sacrificing
functionality. Next, we focus on functionality, starting with Deletes,
which is a key point of criticism for open-addressing hashtables.

5.1.2 Delete throughput

Deleting elements in a concurrent open-addressing scheme is cum-
bersome. In fact, neither DRAMHIT nor Folly support Deletes that
free index slots. In this section, we investigate Deletes in open-
addressing and contrast them with DLHT.

GrowT supports Deletes through tombstones. As the client is
issuing Deletes, over time, the index fills with tombstones. When
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the index gets filled beyond a threshold, GrowT creates a new index,
where it must move all the alive keys. We perform an experiment
with the common pattern of an Insert followed by a Delete to the
same key (i.e., the default InsDel workload). We start with an empty
hashtable that can fit 100 million keys. Figure 5 shows the completed
Inserts and Deletes in M. reqs/s for increasing thread counts.
DLHT achieves up to 12.8X higher throughput than GrowT. This
is because GrowT must move to a new index roughly every 100
million Deletes. Notably, this is still a favorable experiment for
GrowT, because we allocate a very large table compared to the
number of alive keys to amortize the cost of moving to a new table
every 100M Deletes, and when it needs to move to a new table, only
a handful of keys are actually moved. The latter is because there is
always only at most one alive key per thread at any given moment.
The closed-addressing but inlined incapable scheme of MICA
also suffers in this workload. This is because MICA requires at least
two memory accesses and two write-backs to memory for each
Insert and Delete to a key. As expected, CLHT performs comparably
to DLHT-NoBatch, as both perform the Insert and Delete to the
object via accessing and updating the same single cache-line. On top
of that, DLHT with prefetching overlaps the blocking of memory
accesses, hence achieving up to almost 3% the throughput of CLHT.

5.1.3 Put throughput

In Figure 6, we evaluate a Put-heavy workload with 50% Gets and
50% Puts over the default configuration of Table 2 and while varying
threads. DLHT reaches up to 1042 M. reqs/s and outperforms both
open-addressing baselines that do not utilize software prefetching
up to 2.7x. DLHT provides a smaller benefit over DRAMHIT, which
also exploits prefetching. However, Puts in DRAMHIT may silently
insert an item in the index and may be performed out-of-order. As
in the InsDel experiment, MICA requires multiple memory accesses
for every Get and Put hence cannot maximize performance despite
utilizing prefetching. Finally, recall that CLHT does not support
Puts and is thus omitted from the graph.

5.14

To evaluate DLHT’s non-blocking resizing, we perform two exper-
iments. First, we populate 800 million keys in an initially small
index that grows on demand. Figure 7 shows the throughput as
the thread count increases and includes the baselines that support
resizing. As expected, we observe that inserting in a growing in-
dex is detrimental to CLHT, which cannot increase its population

Insert and Resizing throughput

Key Size (Bytes)
Figure 10: Varying key size

Total size of the index (Number of prepopulated keys)
Figure 11: Varying index size

throughput beyond 8 threads, as the cost of its single-threaded
(blocking) resize dominates the population. GrowT’s population
with parallel resizing scales better with threads, but its blocking
nature and slower Inserts render GrowT’s throughput up to 3.9x
lower than the parallel non-blocking population of DLHT.

To better demonstrate the non-blocking nature of DLHT’s resize,
we run a second experiment where 32 threads populate the DLHT
hashtable to 1.6B keys and 32 additional threads randomly perform
Gets on these keys. Figure 8 shows the throughput of Gets and
Inserts over time and a full index of 800M keys that starts resizing
(to a 1.6B keys index) at approximately 3 seconds. At the early stages
of the resize, threads complete Inserts as long as they still find space
in the old index. Once they cannot fit their object into the old index,
they help the resizer to accelerate the transfer. Helping allows this
large transfer to complete in about 4 seconds. For comparison, it
takes GrowT (CLHT) more than 5.6 (14) seconds to complete the
same transfer in a parallel (sequential) but blocking way, during
which all operations are stalled.

In contrast, the non-blocking resize of DLHT allows other oper-
ations (Gets in this case) to complete safely without waiting. Gets
during a resize that find their bin of the old index in a state other
than DoneTransfer, proceed as normal with a single (prefetched)
memory access. As bins are transferred, more Gets must pay the
overhead of accessing both the old and the new index until the
resize completes. Hence, the Get throughput degrades over time
during transferring but comes back once the transfer completes.

5.1.5 Index occupancy

To study the occupancy, we use wyhash and populate a growing
index. We limit the number of link buckets to one-fifth of the bins to
keep serving most operations with a single memory access. Recall
that the lock-free CLHT does not support chaining. Meanwhile,
DLHT chains up to 3 extra buckets per bin. Not surprisingly, even
with a state-of-the-art hash function, we observe that CLHT’s in-
ability to chain buckets results in low occupancy (1-5%). In contrast,
DLHT gracefully handles collisions via its bounded chaining and
sees 63-72% occupancy. Note that to maintain good performance,
open-addressing hashtables typically resize when they reach 30-50%
occupancy (30% in GrowT’s codebase) [46, 47].

5.2 Sensitivity studies on DLHT

In this section, we isolate our focus on DLHT to characterize its
performance while varying its features.
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5.2.1 Varying value size and key size

In Figure 9, we vary the value size from 8 to 1500 bytes. When
values are 8 bytes, they are inlined in the index, and we do not need
to allocate any extra space for them. Apart from our two default
workloads (Get and InsDel), we also run a workload called Get-
Access. This is different from the Get workload as after every Get,
we read the whole value. Recall that when the value is larger than 8
bytes, Gets only return a pointer to the value without accessing it.

For this reason, the Get workload is only slightly affected as the
value size increases. The throughput of InsDel gradually decreases
as the size of allocations increases. The throughput of Get-Access
drops quickly as each get is associated with extra memory accesses
to read the entire value from memory.

In Figure 10, we run the two default workloads while varying
the key size from 8 to 256 bytes. Note the steep performance drop
when the key is larger than 8 bytes. In this case, the key does not fit
in the bucket slot and is stored with the value. This means that 1)
all Gets must now dereference the pointer to the value to read the
entire key (an 8-byte signature is left on the bucket for filtering), 2)
we need to allocate more bytes per Insert to fit the key in the value,
and 3) each Insert must write the key to the newly allocated value.

5.2.2 Varying index size

We next vary the index size of DLHT from 1MB (with 8K prepopu-
lated keys) to 64GB (with 1B prepopulated keys). To study when
prefetching is beneficial, apart from the two default workloads (Get
and InsDel), we run a workload called Get-NoBatch, which is the
same as Get but without batching.

We make two observations. First, because the smallest index
(1MB) can fit inside the private L2 of each core, prefetching is not
helpful, and thus batching has no benefit, only overheads. As the
index grows, prefetching, and thus batching, becomes increasingly
beneficial. Second, we see that unlike Get, InsDel does not benefit
from a small cache-resident index. This is because a smaller index
increases the chances of conflicts in the same bin. This affects the
performance as Inserts and Deletes must CAS the header of the bin.

5.2.3 Varying batch size

Batching is a key feature of DLHT where software prefetching is
used to overlap memory accesses for a request with useful work
on other requests. Figure 12 shows the throughput of DLHT under
the default configuration, while varying the batch degree, i.e., the
number of requests grouped in a batch. Apart from our two default

% Hot accesses

Figure 13: Skew with 1000 hot keys
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Figure 14: Enabling DLHT features

workloads (Get and InsDel), we also show a workload called Get-
Resizing, which is the same as Get but with resizing enabled. This
does not mean that the workload resizes the index, but rather that
we have compiled DLHT with the capability to resize, if needed.
The bars denoted as “No batch”, do not use the batching APL

We make three observations. First, batching can be very effective
in boosting performance. The gains saturate around 24 accesses; we
attribute this limitation to hardware (number of MSHRs and TLB
size). Second, batching improves throughput if there are at least
four requests (two for Get) that can be overlapped. Otherwise, the
overhead of creating the request array trumps the benefit of overlap-
ping memory accesses. Third, enabling resizing hurts performance
more when no batching is used. This is because resize requires each
request to perform two additional atomic stores (§ 3.2.5). Batching
amortizes this overhead amongst the batched requests.

5.2.4 Skew

To study the behavior of DLHT under skew, we perform an exper-
iment with the default configuration, but 1000 keys are hot and
receive an increasing percentage of accesses. Figure 13 shows the
throughput of DLHT for the Get, InsDel, and Get-NoBatch while
we increase the percentage of skewed accesses. As expected, in Get
and Get-NoBatch the throughput increases with skew, surpassing
2.2B Gets/s as both benefit from the locality of skewed accesses.
When all accesses target hot keys, prefetching stops being useful
and Get-NoBatch outperforms the Get workload that includes the
overheads of batching. Under high skew, InsDel manifests a high
number of conflicts which impacts its performance.

5.2.5 Enabling features

DLHT has several features that can be enabled at runtime or compile-
time. Enabling these features typically incurs a performance penalty.
Figure 14 shows the throughput in M. reqs/s of the two default work-
loads (Get and InsDel) while enabling features either in a stacked
fashion, where features are enabled on top of each other, or one-at-
a-time (i.e., single). We explain the meaning of each bar below.
Default. This bar shows the throughput of the default configura-
tion (Table 2), with the exception that we use 32-byte values. This
serves as the baseline for the rest of the bars.

Resizing. DLHT is compiled with resizing enabled. Note that no
resizing actually takes place in this experiment, but DLHT incurs
a performance penalty, as each thread must notify other threads
when entering and leaving the DLHT index, as well as check if
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other threads have initiated resizing.

Hashing. DLHT uses the wyhash hash function [64] instead of a
simple modulo operation to hash a key to a bin. Naturally, this also
further reduces throughput.

Variable value size. DLHT is compiled to allow every value to
have a different size. The performance penalty is very small because
the only overhead is that the size of each value must be stored in
the header of the value.

Variable key size. DLHT allows every key to have a different size.
In this experiment, all used keys are smaller than 8 bytes. Hence
the only overhead is storing and checking the key size in the most
significant bits of the pointer (discussed in § 3.4.1). The overheads
for larger keys are studied in § 5.2.1

Namespaces. DLHT is compiled with namespaces, incurring a
small penalty, as the namespace is stored and checked in each search
in the most significant bits of the value pointer.

No mimalloc. Finally, we use the standard library malloc in-
stead of mimalloc. Naturally, this impacts only the InsDel workload,
which calls either malloc or free on every request.

Notably, this is far from an exhaustive evaluation of all possible
combinations of runtime and compile-time options, which would
have been intractable to evaluate. Rather it is a selection of popular
features among our clients.

5.2.6 Latency

While we focus on delivering high throughput, we also study the la-
tency of DLHT in this section. Figure 15 shows the average and tail
(99th%) latency in nanoseconds for our Get and InsDel workloads,
as a function of the load. Unsurprisingly, the nature of memory-
resident workloads translates into average latencies of 100s nanosec-
onds which increase with the load. We also observe that the tail
is below a microsecond, even under high load. Naturally, Get has
lower latencies than InsDel which involves slower CAS operations.

5.3 Applications and Benchmarks over DLHT

In this section, we evaluate applications and benchmarks that rep-
resent some of our target use-cases.

5.3.1

We optimized DLHT to deliver high performance on single-threaded
applications. Figure 16 shows the single-threaded throughput with
and without our optimizations under four workloads. Apart from
our two default workloads, we also run InsDel-Resize, which en-
ables resizing, and InsDel-Resize-Nobatch, which enables resizing
but disables batching.

Starting from InsDel, we see a 31% improvement as a concur-

Optimized single-threaded application

@ Without optimization [ With optimization

Get InsDel

Figure 16: Single thread application
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rent Insert requires two CASes, and a Delete requires one CAS.
With the optimization, we convert these into regular stores. InsDel-
resizing sees a 35% improvement, as resizing requires notifying
other threads when entering and leaving DLHT, via atomic stores.
The optimization removes the need to notify other threads, as there
are no other threads. The impact of this is amplified when batching
is disabled (91% improvement), as the enter/exit notification must
now happen once per request instead of once per batch. Finally,
we note that the optimization has no impact on the Get workload
because on x86 8-byte atomic loads have a trivial overhead.

5.3.2 Remote memory: CXL emulation

Memory latency seldom improves [65]. In fact, recent trends in-
crease capacity over cost by introducing slower memories that
are denser (e.g., NVM) or reside far (e.g., as in RDMA or CXL).
Hence, we believe that memory-aware designs, which minimize
accesses and exploit software prefetching, will remain critical in
next-generation deployments.

To test this hypothesis, we run the Get workload while emulating
a CXL deployment of DLHT. For this, we run 36 threads on the
first socket and pin DLHT’s memory on the remote socket — as in
recent works [37, 48]. We observe that DLHT (with prefetching)
offers 2.9% the throughput of DLHT-NoBatch. As expected, remote
memory lowers the throughput (to about half) compared to local.

5.3.3 Lock manager over HashSet

This workload is inspired by a client that used DLHT’s HashSet
to implement a database lock manager. Inserting and deleting a
key over the HashSet mimics locking and unlocking a key (or a
set of keys). Recall that DLHT’s batching interface preserves the
order of requests. As such, DLHT’s order-preserving batching is
an especially good fit for a lock manager, which typically wants to
implement protocols similar to two-phase-locking that grab locks
in some order and later release them. This is also an application
example where DRAMHIT’s out-of-order batching, which may
reorder requests to overlap their accesses, can introduce deadlocks.

Figure 17 shows the throughput of locks and unlocks while vary-
ing the threads for DLHT(-NoBatch). When batching is used, the
throughput scales well with the number of threads and is able to
peak at almost 1.5B locks/unlocks per second. As expected with-
out batching, when the memory accesses cannot be masked, the
throughput is up to 2.2x lower.

5.3.4 Single-key benchmarks (YCSB Mixes)

We study the performance of DLHT under YCSB [9], the popular
single-key benchmark. Figure 18 shows the throughput of four



HPDC ’24, June 2024, Pisa, Italy

A. Katsarakis, V. Gavrielatos, and N. Ntarmos

200 1500
2000 | g yCSBC (100% Get) A YCSB B (95% Get - 5% Put) 2 ® TATP 4 Smallbank o B DLHT M DLHT-NoBatch
g YCSB A (50% Get-50% Put) # YCSBF (100%RMW) 2 o &
g 1500 z @ 1000
5 E =3
2 < 100
2 1000 & 2
3 s S 500
H 500 £ 0 =
5 s s
: . g o :
0 » s P 0 20 40 60 1 2 4 8 16 32 T
Threads Threads Threads
Figure 18: Single-key YCSB mixes Figure 19: Transactional benchmarks Figure 20: Hash Joins
‘ Characteristic Tables Columns Txs Read Txs ‘ Baseline ‘ Comparison with DLHT
TATP read-intensive 4 51 7 80% - 3.5x lower Get throughput | 8x slower Population
Smallbank | write-intensive 3 6 6 15% CLHT - more than 10x worse occupancy (cannot chain buckets)
- Blocking resize, no Puts, assumes unique values, < 8B keys/values
Table 4: Summary of evaluated transactional benchmarks. oA ~4.8% lower Get throughput
- Non-resizable, lock-based, non-inlining
. . . - 3.5x lower Get throughput | 3.9x slower Population
YCSB mixes (shown in legend) as the threads increase. The config- GrowT ehput | P
. - 12.8x lower InsDel throughput (tombstone-based deletes)
uration follows the defaults of Table 2. P T—.
. . - 3.5x lower Get throu, ut
All four mixes scale well up to 32 threads where cores in both Folly ) &P )
) - Non-resizable, deletes cannot reclaim slots, < 8B keys/values only
sockets are used and do saturate the memory bandwidth when P T—.
. . . - 1.7x lower Get throughput
hyper-threading is enabled. The update-only (YCSB F) mix peaks . ) e )
b half the th h £ d Iv (YCSB C . h DRAMHIT | - Non-resizable, deletes cannot reclaim slots, < 8B keys/values only
at about half the throughput of read-only ( )’ saturating the - Only Upserts (no pure Insert/Put), batching may reorder requests

memory bandwidth at 32 threads. This is expected, since it incurs
double the memory traffic as every accessed cache-line is updated
and written back to memory.

5.3.5 Multi-key benchmarks (OLTP Transactions)

To study the performance of DLHT on multi-key transactions, we
implement and evaluate two popular OLTP benchmarks, TATP [52],
which is read-intensive, and Smallbank [5] that is write-intensive
(summarized in Table 4). In this experiment, the same threads run
both the logic that generates transactions and the DLHT logic. We
ensure the benchmarks are memory-resident by populating their
tables with 1M subscribers (TATP) and 10M accounts (Smallbank).

Figure 19, shows the throughput of the two benchmarks while
varying threads. We see that both benchmarks scale well with the
number of threads and surpass 100M transactions per second. With
64 threads TATP (Smallbank) reaches 175M (129M) transactions
per second. Note that both benchmarks only access and/or update
just a few objects in a transaction. Thus, TATP, with fewer updates,
outperforms Smallbank as it incurs fewer write-backs to memory.

5.3.6 Hash Join (OLAP Application)

We evaluate a non-partitioned join over DLHT. We use workload A
from [44] in which both relations are memory-resident. Workload
A consists of 16B tuples and a build relation (R) and probe relation
(S) with size 2?7 and 23! similarly to [44, 57]. Figure 20, shows the
throughput (%) while varying the number of threads.

In joins, where batching is naturally applicable, DLHT (with soft-
ware prefetching) achieves up to 1.4B tuples/sec. This translates to a
2.2X benefit over DLHT-NoBatch. Interestingly, the memory-aware
and non-blocking design of DLHT delivers a very high throughput
CPU-based join — despite large tables that cannot fit in cache and
under no partitioning or specializations for joins (e.g., eschewing
synchronization for the read-only probing phase). We note that

Table 5: Comparison summary of DLHT and (fastest) baselines.

partitioning and other such optimizations are synergistic to the
features of DLHT. We leave a more elaborate study for future work,
as joins are not the main focus of this paper.

6 RELATED WORK

This section extends related work beyond the designs summarized
in Table 5, which we also analyzed in § 2 and § 5.1.

Numerous works focus on high-throughput hashtables. Some
exploit hardware acceleration via FPGAs [6, 30, 34, 36], GPUs [3,
27, 44, 45, 57, 66], or SIMD [1, 15]. Others propose alternative prob-
ing [13, 17, 59], efficient concurrency control [29, 41], or focus on
persistency [7, 8, 28, 35, 43, 50, 67]. Finally, some designs offer non-
blocking resizes [18, 19, 22, 42, 63]. Unlike DLHT, none of these
designs exploit software prefetching to hide latencies and most need
two or more memory accesses to serve a request from memory.

7 CONCLUSION

We showed that existing in-memory hashtables are unable to reach
a billion requests per second in a commodity server when accessing
memory. In particular, we showed that state-of-the-art hashtables
forfeit core functionality, block excessively, and handle accesses
inefficiently in memory-resident workloads. We presented DLHT,
a practical non-blocking and memory-aware hashtable. DLHT ad-
dresses the issues of existing designs to offer complete functionality,
fast non-blocking Resizes, 1.6B requests per second, and 3.5% (12X)
the throughput of state-of-the-art (open-) closed-addressing designs
on Gets (Deletes).
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