
Lazy Release Persistency
Mahesh Dananjaya, Vasilis Gavrielatos, Arpit Joshi∗, Vijay Nagarajan

University of Edinburgh, ∗Intel
Firstname.Lastname@ed.ac.uk,Arpit.Joshi@intel.com*

Abstract
Fast non-volatile memory (NVM) has sparked interest in
log-free data structures (LFDs) that enable crash recovery
without the overhead of logging. However, recovery hinges
on primitives that provide guarantees on what remains in
NVM upon a crash. While ordering and atomicity are two
well-understood primitives, we focus on ordering and its
efficacy in enabling recovery of LFDs. We identify that one-
sided persist barriers of acquire-release persistency (ARP)—
the state-of-the-art ordering primitive and its microarchi-
tectural implementation—are not strong enough to enable
recovery of an LFD. Therefore, correct recovery necessitates
the inclusion of the more expensive full barriers.
In this paper, we propose strengthening the one-sided

barrier semantics of ARP. The resulting persistency model,
release persistency (RP), guarantees that NVM will hold a
consistent-cut of the execution upon a crash, thereby satis-
fying the criterion for correct recovery of an LFD. We then
propose lazy release persistency (LRP), a microarchitectural
mechanism for efficiently enforcing RP’s one-sided barri-
ers. Our evaluation on 5 commonly used LFDs suggests that
LRP provides a 14%–44% performance improvement over the
state-of-the-art full barrier.

CCSConcepts •Computer systems organization−→Par-
allel architectures; • Hardware −→ Emerging technolo-
gies.

Keywords Memory Consistency Models, Persistent Mem-
ory, Release Consistency, Log-Free Data Structures

ACM Reference Format:
Mahesh Dananjaya, Vasilis Gavrielatos, Arpit Joshi, Vijay Nagara-
jan. 2020. Lazy Release Persistency. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS ’20), March 16–20,
2020, Lausanne, Switzerland. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3373376.3378481

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7102-5/20/03. . . $15.00
https://doi.org/10.1145/3373376.3378481

1 Introduction
The advent of fast non-volatile memory (NVM) has enabled
the possibility of recovering from a system crash while in-
curring minimal overhead during program’s normal opera-
tion [7–9, 18, 20–22, 31, 36, 40, 43]. Program recovery, how-
ever, hinges on primitives that control the order in which
data becomes persistent [1, 21, 24–26, 34, 35, 38]. What prim-
itive(s) offer a programmable interface while allowing for an
efficient implementation at the hardware level?
The question is the subject of an ongoing debate. Should

languages support failure-atomicity for a group of writes, or
should languages forego atomicity and support only ordering
between individual word-granular writes?

Kolli et al. [24] make a case for only ordering, arguing that
it is more general and performance-friendly when compared
to failure-atomicity which requires logging. They reason
that because future processors are likely going to guarantee
atomicity of only individual persists, a library that provides
failure-atomicity can be used when necessary. They then
propose acquire-release persistency (ARP), a language-level
persistency model that extends C++11 by treating its re-
lease/acquire annotations as one-sided persist barriers. They
also propose a hardware mechanism for enforcing these one-
sided barriers efficiently. Thus, the key to ARP’s performance
is its one-sided barriers that attempt to precisely enforce the
orderings intended by the programmer.
In subsequent work, however, Gogte et al. [14] make a

case for failure-atomicity, arguing that the absence of failure-
atomicity in ARP (and indeed any ordering primitive) makes
reasoning about recovery extremely cumbersome.
Not all programs require failure-atomicity, however. In

fact, an important class of nonblocking data structures [4,
10, 11, 19, 33, 37] is designed specifically to avoid atomic
regions. Recovery from a crash comes for free, aka null re-
covery, as long as writes persist in the order in which they
become visible [5, 6, 19, 39, 41]. The emergence of NVM has
sparked interest in these log-free data structures (LFDs) [10]
primarily because such programs enable recovery without
the overhead of logging. Therefore, while we concur with
Gogte et al. [14] that failure-atomicity simplifies recovery
in the general case, we argue that languages must also offer
efficient ordering primitives for supporting LFDs.
However, we identify that ARP’s one-sided barriers are

not strong enough to enable recovery in LFDs. Consider
Figure 1 that depicts an execution history of a concurrent
log-free linked list. Thread T0 first prepares node A1 for
insertion by writing to its fields (Figure 1a). Then, it links

https://doi.org/10.1145/3373376.3378481
https://doi.org/10.1145/3373376.3378481

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Mahesh Dananjaya, Vasilis Gavrielatos, Arpit Joshi, Vijay Nagarajan

e) ARP Semanticsd) Required Semantics

Thread 1

Rel: CAS(N1.Next)

W2: {}

W3: {}p

Acq: N1.Next

Rel: CAS(N1.Next)

p
p

p

p

p

p

N1.Next
N1 N2

A1:
Key
Values
Next

N1.Next A1.NextN2N1

A1:
Key
Values
Next

A1N1 N2

B2

a) Thread 0 prepares new node A1 b) Thread 0 links node A1 c) Thread 1 searches for place to insert B2

f) ARP-Fix

Thread 1

Rel: CAS(N1.Next)

W2: {}

W3: {}persist barrier

Acq: N1.Next
persist barrier

Thread 1

Rel: CAS(N1.Next)

W2: {}

W3: {}

Acq: N1.Next

hb
hb

hb

Thread 0 Thread 0 Thread 0

A1.Key=
A1.Val=
A1.Next=

W1:

B2.Key=
B2.Val=
B2.Next=

W4:

A1.Key=
A1.Val=
A1.Next=

W1:

B2.Key=
B2.Val=
B2.Next=

W4:

A1.Key=
A1.Val=
A1.Next=

W1:

B2.Key=
B2.Val=
B2.Next=

W4:

Figure 1: (a,b) Thread 0 inserts A1 in a log-free linked list. (c) Then, Thread 1 attempts to insert B2. (d) shows the required
persistency semantics for an insert. (e) shows the semantics provided by ARP and (f) shows how ARP can match the required
semantics. W:{} represents potential writes.

A1 with the rest of the list via a single atomic Compare-
and-Swap (CAS) instruction (Figure 1b). Note that from a
consistency standpoint the CAS must have release seman-
tics to ensure that the writes to A1 become visible before
the link is updated. To enable recovery, persistency must
mirror visibility: the writes to A must persist before the CAS
persists (Figure 1d). However, ARP’s one-way barrier does
not provide this guarantee. (As shown in Figure 1e, it only
ensures that writes to A1 persist before writes to B2 from
the acquiring thread persist). Therefore, to enable recovery,
the programmer must place full persist barriers before the
release and after the acquire (Figure 1f). Alas, the full barrier
requirement annuls ARP’s performance benefits which stem
from its one-sided barriers.
In this paper, we propose strengthening the one-sided

barrier semantics of ARP to enable recovery of LFDs. The
resulting persistency model, dubbed Release Persistency (RP),
ensures that any two writes that are ordered by the consis-
tency model also persist in that order. Thus, the persistency
model guarantees that the NVM will hold a consistent-cut of
the execution upon a crash, thereby satisfying the criterion
for correct recovery of an LFD [19].
We then propose an efficient microarchitectural mecha-

nism for enforcing the one-sided barrier semantics of RP.
Going back to Figure 1d, the challenge is to enforceW1

p
−→

Rel
p
−→W4, without enforcing eitherW1

p
−→W 2 orW3

p
−→W4.

(The relation
p
−→ denotes the persist order). We observe that

efficiency necessitates a buffered implementation in which
persistency lags behind visibility [9, 21, 25]. Taking inspi-
ration from lazy release consistency [23], a protocol from
the DSM literature that enforces RC lazily, we propose lazy
release persistency (LRP) for enforcing RP’s one-sided barrier
semantics lazily. In a nutshell, on an acquire LRP detects
the matching release via the coherence protocol and per-

sistsW1 and Rel from the release side (in that order) before
performing the acquire, thereby enforcingW1

p
−→ Rel

p
−→W4.

1.1 Contributions

• We have argued thus far that languages must offer efficient
ordering primitives, in addition to failure-atomicity, for
supporting the important use case of LFDs.

• We observe that ARP’s one-sided barriers—their seman-
tics as well as implementation—are not strong enough to
enable recovery in LFDs, which necessitates the inclusion
of the relatively inefficient full barriers (§3).

• We propose strengthening ARP’s one-sided barrier seman-
tics. We argue that the resulting model, RP, enables correct
recovery of LFDs upon a crash (§4).

• We propose LRP, a microarchitectural mechanism for effi-
ciently enforcing RP’s one-sided barriers (§5) .

• Our experiments on 5 commonly used LFDs suggests that
LRP provides a 14%-44% (average 33%) performance im-
provement over the state-of-the-art full barrier, while en-
forcing RP (§6).

2 Background
In this section, we discuss persistency models with a focus on
variants of (buffered) epoch persistency (§2.2). We then dis-
cuss log-free data structures (LFDs) and describe the actions
required for their crash-recovery (§2.3). But before diving
into persistency, we first discuss consistency since the two
are closely intertwined.

Without loss of generality, the paper assumes a simple vari-
ant of Release Consistency with a total order on all memory
events, similar to what is supported by the ARMv8 and RISC-
V ISAs [2, 42]. To focus on our ideas, and not get bogged
down by memory model intricacies, we assume that the
language-level model is identical to the ISA-level model.

Lazy Release Persistency ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

2.1 Release Consistency
A consistency model specifies how memory operations are
globally ordered. This global memory order specifies what
value a read must return: a read returns the value of the
most recent write before it in the global memory order. Re-
lease Consistency (RC) [13] allows for reads and writes to
be tagged as acquires and releases respectively. These ac-
quires and releases have implicit one-sided barrier seman-
tics. Specifically, memory operations that precede a release
in program order appear before the release in the global
order, while memory operations that follow an acquire in
program order appear after the acquire in the global order.
Furthermore, most consistency models support read-modify-
writes (RMWs) which are essential for achieving synchro-
nization [3, 17].

Below, we provide a simplistic RCmemorymodel in which
fences are omitted. We use the following notation for mem-
ory events:
• Mi

x: a memory operation (of any type) to address x from
(hardware) thread i . The operation can be further specified
as a read: Rix , a writeW i

x or with an identifier (e.g.,M1ix)
• Relix: a release (release write or release-RMW) to address
x from thread i .

• Acqix: an acquire (acquire read or acquire-RMW) to address
x from thread i .

We use the following notation for ordering memory events:

• Mi
x

po
−−→ Mi

y:M i
x precedesM i

y in program order.

• Mi
x

hb
−−→ Mj

y:M i
x precedesM j

y in the global history of mem-
ory events, which we refer to as happens-before order
(
hb
−−→).

• Relix
sw
−−→ Acqjx:Rel ix synchronizes withAcq

j
x , i.e.,Acq

j
x reads

the value from Rel ix and i , j.

We formalize Release Consistency using the following rules:
≻Release one-sided barrier semantics.Amemory access
that precedes a release in program order appears before the
release in happens-before:M i

x
po
−−→ Rel iy ⇒M i

x
hb
−−→ Rel iy .

≻ Acquire one-sided barrier semantics. A memory ac-
cess that follows an acquire in program order appears after
the acquire in happens-before: Acqiy

po
−−→ M i

x ⇒ Acqiy
hb
−−→

M i
x .

≻ Program order address dependency. Two memory ac-
cesses to the same address ordered in program order pre-
serve their ordering in happens-before: M1ix

po
−−→ M2ix ⇒

M1ix
hb
−−→ M2ix .

≻ Release synchronizes with acquire. A release that syn-
chronizes with an acquire appears before the acquire in
happens-before: Rel iy

sw
−−→ Acq jy ⇒ Rel iy

hb
−−→ Acq jy .

≻ RMW-atomicity axiom. An RMW appears atomically
(consecutively) in happens-before: Rix

RMW
−−−−−→W i

x ⇒ Rix
hb
−−→

W i
x and there can be no memory operation from any thread

M j
y such that Rix

hb
−−→ M j

y
hb
−−→W i

x .
≻ Read value axiom. A read to an address always reads the
latest write to that address before the read in happens-before:
ifW j

x
hb
−−→ Rix (and there is no other intervening writeW k

x

such thatW j
x

hb
−−→W k

x
hb
−−→ Rix), the read Rix returns the value

written by the writeW j
x .

2.2 Persistency Models
In a manner analogous to consistencymodels, Pelly et al. [34]
introduce the notion of memory persistency, which specifies
a global order in which writes can persist (i.e., persist order).
Persist notation. We use the following notation to denote
that writeW i

x appears after writeW j
y in persist order:W i

x
p
−→

W j
y . To put it succinctly,W j

y can persist only afterW i
x has

persisted.
Buffered Epoch Persistency (BEP). BEP allows the pro-
grammer to place persist barriers, demarcating the program
into epochs [9]. BEP then uses the epochs to enforce that
for any two writes:W i

x ,W i
y , ifW i

x
po
−−→ W i

y and the writes

belong to different epochs: ek , el , thenW i
x

p
−→W i

y . BEP also
involves an inter-thread component. When there is an inter-
thread shared-memory dependency between two threads,
the writes from the source epoch would have to be persisted
before the writes from the target epoch. We note that BEP is
a performance-oriented variant of the stricter epoch persis-
tency (EP). BEP improves upon EP by decoupling persistency
and visibility through buffering of writes.

2.2.1 Persist Barrier Implementations

BEP can be enforced via persist barriers. We classify prior
work on persist barriers into two classes based on howwrites
are buffered: 1) cache-based implementations that use the
hardware caches to buffer writes and 2) persist-buffer-based
implementations that enqueue all writes in a global FIFO,
called persist buffer.
Cache-based. Cache-based implementations [9, 21] buffer
writes in the hardware caches and enforce epoch orderings
by keeping track of each cache-line’s epoch. Persisting a
cache-line with epoch ek triggers the persist of all currently
buffered writes from older epochs. A persist is triggered
upon a conflict; there are two types of conflicts.
≻ Intra-thread conflicts. There are two sources of intra-
thread conflicts: 1) evicting a cache-line due to a demand
access and 2) attempting a write with epoch ek on a cache-
line with an older epoch-id.
≻ Inter-thread conflicts. These are caused by inter-thread
shared-memory dependencies. Such dependencies mandate

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Mahesh Dananjaya, Vasilis Gavrielatos, Arpit Joshi, Vijay Nagarajan

the enforcement of persist ordering between epochs of two
different threads. Inter-thread conflicts can be resolved by
blocking the target thread until the source epoch persists [9].
It is possible to enforce these in a lazy manner [21] although
that comes with the complexity cost of avoiding deadlocks
if there are cyclic dependencies.
Note that while conflicts often trigger multiple persists on
the critical path of execution, state-of-the-art cache-based
implementations mitigate this overhead through proactive
flushing [21], a technique that starts flushing an epoch as
soon as its execution completes.
Persist-buffer-based. Persist-buffer-based implementations
[25, 30] buffer and order writes in per-thread queues that are
added alongside the cache hierarchy. These queues drain into
buffer(s) that are adjacent the NVM controllers. Together
these buffers enforce the required intra- and inter-thread per-
sist orderings. Delegated Persist Ordering [25] comes with
a single buffer at the NVM controller and hence may en-
force a global order amongst potentially independent epochs
from two difference threads. HOPS [30] mitigates this with
per-thread buffers alongside the NVM controllers.
LRP approach. The persist-buffer based approach arguably
simplifies the design, avoiding the complexity of tracking
conflicts inside the caches. On the other hand, the cache-
based approach reuses the cache hierarchy for enforcing or-
dering. Both of these approaches are designed for enforcing
full persist barriers; neither approach provides an obvious
pathway for enforcing one-sided barriers. In this paper, we
focus on the cache-based approach for enforcing the one-
sided barriers of RP.

2.3 Log-free data structures (LFDs)
To ensure correctness, operations that modify a data struc-
ture must be atomic. Often atomicity is achieved through
atomic code regions protected by locks. However, an im-
portant class of nonblocking data structures is designed to
explicitly avoid locks. These data structures carefully bake
their atomicity into a single instruction (typically a Compare
And Swap, i.e., CAS). Collapsing the atomic region into a
single instruction eliminates the need for locks [4, 19]. For
instance, in the example of Figure 1, thread T0 first creates
a node privately and then it atomically links the node with
the linked list through a single CAS instruction.

Nonblocking data structures strive to avoid blocking; they
avoid situations in which a thread is in a blocked state, un-
able to make progress on its own as it is waiting for other
threads. As a happy consequence, these data structures also
eliminate the need for explicit failure atomicity of a group
of writes: since the atomicity is now incorporated into a
single instruction, there is no longer need to persist multiple
instructions atomically. Thus, nonblocking data structures
are log-free, as they do not require the logging mechanisms
that are typically associated with failure atomicity [10].

To ensure recovery on a crash, intuitively the NVM must

be kept in a consistent state. What represents a consistent
state for an LFD? Izraelevitz and Scott [19] show that LFDs
can be recovered without any effort (i.e., null recovery), if
what remains on the NVM after a crash is a consistent cut
of the program’s execution.
In this work, we enable null recovery for LFDs through

an RC-based language-level persistency model called release
persistency (RP). RP, being a language-level model, has to be
compiled down to an ISA-level persistency model. Without
loss of generality, we assume the ISA-level model is identical
to the language-level model. (It is worth noting that our ISA
model is similar in spirit to a recent proposal for persistency
extensions to ARMv8 [41]).We then propose LRP, an efficient
microarchitectural mechanism for implementing (the ISA-
level) RP.

3 Limitations of ARP
Gotge et al. [14] argue that a persistency model based on
only ordering (such as ARP) is unsatisfactory because, the
lack of atomicity guarantees makes recovery cumbersome.
While agreeing with Gotge et al. for general programs, we
argue for ordering’s utility for LFDs. Recall that LFDs can be
recovered without any effort after a crash (i.e., null recovery),
as long as the NVM reflects a consistent cut of the program’s
execution.
Design goal. In order to maximize performance, while al-
lowing for null recovery, we set the following design goal:
the persistency model must precisely mirror the consistency
model, which in our case is RC. The key requirement to
match RC semantics is treating releases and acquires as one-
sided persist barriers, in the same manner as RC treats them
as one-sided barriers.

Alas, ARP [24], the only RC-based persistency model with
one-sided barriers falls short of that goal. In the rest of this
section, we first describe ARP’s semantics (§3.1) and imple-
mentation (§3.2), focusing on how ARP fails to achieve our
design goal. We then motivate the need for a new persistency
model that can rectify ARP’s shortcomings (§3.3).

3.1 ARP semantics
ARP [24] is a language-level persistency model with explicit
release and acquire annotations. Notably, these semantics
comprise the ARP-rule, which is defined below.
ARP-rule.When a release synchronizes with an acquire, all
writes that precede the release must persist before writes
that follow the acquire:

W i
y

po
−−→ Rel ix

sw
−−→ Acq jx

po
−−→W j

z ⇒W i
y

p
−→W j

z

3.1.1 ARP semantics shortcomings

We note that the ARP-rule is not strong enough to mirror
the happens-before order of RC. Thus, it is unable to provide

Lazy Release Persistency ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

null recovery as it does not preserve a consistent cut in
the NVM. For instance, RC mandates that if a release is
visible, all preceding writes must be visible too, i.e.,W i

y
po
−−→

Rel ix ⇒W i
y

hb
−−→ Rel ix . However, ARP allows for a release to

persist before all preceding writes have persisted; i.e.,W i
y

po
−−→

Rel ix ⇏W i
y

p
−→ Rel ix .

Going back to the example of Figure 1b, in the event of a
crash, it may be the case that the release of thread T0, which
links a new node into the linked list, has persisted, but the
preceding writes that created the node have not persisted.
This would leave the linked list in an inconsistent, and hence
unrecoverable state.

3.2 ARP implementation
ARP is implemented on top of a persist-buffer based imple-
mentation, originally designed to enforce the RCBSP [25]
model. RCBSP is a persistency model that is based on the
ARMv7 consistency model and hence involves full persist
barriers. Thus, in the original RCBSP implementation, on ex-
ecuting a persist barrier, the buffer’s epoch is incremented so
that subsequent writes coming after the barrier are ordered
after those before the barrier.
For enforcing ARP, however, releases and acquires need

not be treated as full persist barriers: writes that precede a
release need not be ordered before writes that follow the re-
lease; and writes that follow an acquire need not be ordered
after writes that precede the acquire. The ARP implementa-
tion enhances RCBSP hardware to leverage this observation.
Thus, on a release, no barrier is placed; rather a flag is

raised denoting that the next acquire must place a persist
barrier. On an acquire, a persist barrier is placed only if the
flag is found raised. These additions enforce the ARP-rule as
follows: if a release Rel ix is inserted into the buffer before an
acquireAcq jy , then any write that precedes Rel ix must belong
to an older epoch than any write that follows Acq jy , thus
ensuring that writes that precede a release persist before
writes that follow an acquire.

3.2.1 ARP implementation shortcomings

First, we note that the ARP implementation precisely en-
forces the ARP-rule without mirroring RC. For instance, a
write that precedes a release is likely to belong to the same
epoch as the release, and could thus persist after the release.

Second, even though the ARP authors identify that maxi-
mizing performance hinges on enforcing one-sided persist
barriers, their implementation still uses full persist barriers.
(This is because their implementation builds on top of RCBSP
hardware). The lack of one-sided barriers in the implemen-
tation makes it impossible to parallel the RC semantics: on
the one hand, when the barrier is elided (i.e., on a release)
the implementation fails to match the RC semantics, while

on the other hand, when the barrier is placed (i.e., on an
acquire) the implementation provides more orderings than
RC requires.

3.3 Why not simply fix ARP?
It is possible to honor RC semantics on top of ARP (and thus
enable null recovery of LFDs) as long as a persist barrier
is placed before every release. Going back to the linked list
example, a persist barrier placed before the release (Figure 1d)
ensures that the new node would persist before the link
(i.e., the CAS) persists.

Recall, however, that the design goal is to not only enable
null recovery of LFDs, but also to maximize performance
through one-sided persist barriers. Placing a full persist bar-
rier before every release falls short of achieving this goal.
Aggravating the problem, the persist-buffer-based implemen-
tation of ARP pertains solely to full persist barriers, making
it impossible to provide the desired one-sided persist seman-
tics.

Therefore, it is clear that there is a need for a new persis-
tency model and its efficient implementation, built from the
grounds up to provide efficient null recovery for LFDs.

4 Release Persistency
In this section, we introduce Release Persistency (RP), a
persistency model that reconciles the performance of one-
sided persist barriers with the stronger semantics that is
required for the recovery of LFDs. First, we formally specify
RP (§4.1) and then we discuss the performance implications
of our specification (§4.2).

4.1 Formal Specification
RPmust ensure that the persist order reflects the RC happens-
before order, which we formally specified in §2.1, for en-
abling crash recovery. Note that because the persist order
defines the order in which writes persist, only those RC rules
that pertain to writes must translate into the RP formalism.
Therefore, RP can be succinctly formalized as follows. Any
two writes in the RC happens-before order must also persist
in that order:W 1ix

hb
−−→W 2jy ⇒W 1ix

p
−→W 2jy

From the happens-before rules of §2.1, we can expand and
specify RP via the following rules:
≻ Release one-sided barrier semantics. A write that pre-
cedes a release in program order appears before the release
in persist order:W i

x
po
−−→ Rel iy ⇒W i

x
p
−→ Rel iy .

≻ Acquire one-sided barrier semantics. A write that fol-
lows an acquire in program order appears after the acquire
in persist order: Acqiy

po
−−→W i

x ⇒ Acqiy
p
−→W i

x .
≻ Release synchronizes with acquire. A release that syn-
chronizes with an acquire appears before the acquire in per-
sist order: Rel iy

sw
−−→ Acq jy ⇒ Rel iy

p
−→ Acq jy .

≻ Program order address dependency. Two writes to the

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Mahesh Dananjaya, Vasilis Gavrielatos, Arpit Joshi, Vijay Nagarajan

same address ordered in program order preserve their order-
ing in persist order:W 1ix

po
−−→W 2ix ⇒W 1ix

p
−→W 2ix .

≻ RMW-atomicity axiom. Read and write of an RMW
appear consecutively in persist order: Rix

RMW
−−−−−→ W i

x ⇒

Rix
p
−→W i

x and there is no writeW j
y (from any thread) such

that Rix
p
−→W j

y
p
−→W i

x .

A note on RP acquires. Because an acquire being a read
cannot persist, the Acqiy

p
−→W i

x ordering may appear bizarre
at first. The intention here is to allow for two or more rules
linked by an acquire to apply transitively.

For example, when a release synchronizes with an acquire,
the released value must persist before any of the writes
following the acquire persist. This is captured by applying
the “release synchronizes with acquire” rule and the “acquire
one-sided barrier semantics” rule transitively.
In a similar vein, when a release synchronizes with an

RMW marked acquire: (1) the released value must first per-
sist; (2) then the value written by the RMW must persist
(follows from the RMW atomicity axiom that mandates that
read and write must appear consecutively in persist order);
and finally (3) writes following the RMW must persist.

4.2 RP reduces conflicts
In Section 2.2.1, we discussed the conflicts that can occur in
a cache-based implementation of a BEP model. Conflicts can
adversely impact performance because they can trigger the
persist of entire epochs in the critical path. RP, with its one-
sided barriers, substantially reduces the number of conflicts
that need to be handled, as will see next with an example.

Consider Figure 2a which shows two writes,WA andWB ,
on different epochs e0 and e1 respectively, segregated by a
full persist barrier that immediately precedes the release
rel :W1,0. Even though RC allows forWB to become visible
beforeWA, the full persist barrier mandates thatWB cannot
persist beforeWA has persisted. Therefore, if the cache-line
written byWB were to be evicted, it would in turn trigger
the persist ofWA in the critical path. Making matters worse,
if writesWA andWB are to the same cache-line, the mere act
of performing the writeWB triggers the persist ofWA. (In
order to ensure that writes persist in epoch-order, we must
ensure that a dirty cache-line contains writes of the same
epoch.)
These conflicts are eliminated when placing a one-sided

barrier instead, as in Figure 2b. The one-sided barrier cap-
tures the exact semantics of RC, allowingWB to be persisted
out-of-order. In the special case whereWA andWB are to the
same cache-line, the one-sided barrier enables the coalescing
of writes to the same dirty cache-line. Similarly, in Figure 2c,
one-sided persist barriers capture the exact semantics of an
acquire: the persist ofWB does not trigger the persist ofWA.
In summary, with one-sided barriers, persisting a write

does not automatically trigger the persists of writes from

previous epochs. This relaxation substantially reduces the
number of both inter- and intra- thread conflicts including:
conflicts due to writing to a cache-line with an older epoch,
conflicts triggered by evicting a cache-line and conflicts due
to forwarding a cache-line upon receiving a coherence re-
quest. Furthermore, eliminating these conflicts could allow
for significant coalescing of writes to the same cache-line,
thus potentially reducing the absolute number of persists.
We hypothesize that all of this has a significant impact on
performance. Our evaluation (§6) vindicates this hypothesis.

WA

W0,0

W0,m

WB

rel:W1,0

W1,n

(b) 1-sided barrier (release)

W0,0

(c) 1-sided barrier (acquire)

W0,0

acq:R0,n

WA

WB

W1,0

W1,n

Epochs

1-sided barrier

WA

W0,m

WA

WB

rel:W1,0

W1,n

(a) full persist barriers

Epochs Epochs

full persist barrier 1-sided barrier

WA

Figure 2: RP’s one sided persist barrier allows forWB to be
persisted beforeWA and this reordering could significantly
reduce intra- and inter-thread conflicts.

5 Lazy Release Persistency
In this section, we present lazy release persistency (LRP), our
microarchitectural mechanism for enforcing RP.
Big Picture. As discussed in §2.2.1, a buffered implementa-
tion where visibility does not wait for persistency is critical
for minimizing persistency-related overheads. On the one
hand, this calls for a mechanism that maximizes buffering.
On the other hand, too much buffering can pose problems.
Recall that RP mandates the enforcement of inter-thread

persist orderings when a thread synchronizes with another.
Allowing for buffering to extend across threads incurs com-
plexity in the form of coordination across memory con-
trollers for enforcing inter-thread persist dependencies. It
also involves complex deadlock-avoidance mechanisms to
eliminate potential cyclic inter-thread dependencies [21]1.

Therefore, we make the design choice of buffering persists
within a thread until an inter-thread dependency is detected,
at which point we persist the buffered writes. We will see
later that our experimental evaluation (§6.4) vindicates this
choice.
How to realize these design requirements? Our insight

here is that the requirements matches that of lazy release con-
sistency (LRC) [23], a protocol first proposed in the context
of DSMs for enforcing RC lazily.

Specifically, LRC buffers writes to shared data locally, past
a release operation, until the time of the corresponding
1Although DRF programs do not pose a deadlock risk, the hardware must
be able to handle racy programs as well

Lazy Release Persistency ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

acquire. At this point, the releasing processor makes the
buffered writes globally visible, thereby enforcing RC.

Taking inspiration from LRC, we propose LRP, a protocol
for enforcing RP and its one-sided barriers. In LRP, writes
to the L1 are simply buffered and do not trigger persists.
When an inter-thread synchronization is detected, i.e., when
a release synchronizes with an acquire, all of the cache-lines
written before the release (and the release) are persisted
before the acquire is performed, thereby enforcing RP.
Next, we provide a high-level overview of LRP and how

it satisfies the RP semantics (§5.1). We then dive into the
specifics of our implementation (§5.2).

5.1 LRP Overview
In this section we provide a high-level overview by outlin-
ing the invariants satisfied by LRP. We informally argue for
correctness by reasoning that the invariants are sufficient to
enforce RP. In the next section, we discuss the detailed mi-
croarchitecture, explaining how LRP enforces the invariants.
LRP uses a buffering-based approach where persistency

trails visibility. Therefore, writes to the L1 do not trigger
persists. Instead, whenever a dirty cache-line is written back
from the L1 (owing to a cache-line eviction or a downgrade),
the cache-line is persisted by the LLC/directory controller.
LRP ensures that these persists enforce RP via ensuring four
key invariants:

• Invariant-1 (I1):When the L1 controller receives an
eviction request for a cache-line written by a release,
it blocks the request until all of the cache-lines written
by writes prior to the release have been persisted.

• Invariant-2 (I2): When the L1 controller receives a
downgrade request for a cache-linewritten by a release
from the directory, the request is blocked until: (a)
all of the cache-lines written by writes prior to the
release have been persisted; and (b) the release has
been persisted.

• Invariant-3 (I3):When an RMW, marked acquire, is
successful (i.e., if its write is successful), the acquire
blocks the pipeline until the write of the RMW persists.

• Invariant-4 (I4): When the directory controller re-
ceives a write-back from the L1, the directory persists
the cache-line, blocking requests for the cache-line
until it persists.

We now argue that the four invariants are sufficient to
enforce RP’s persistency rules.
≻ Release one-sided barrier semantics. Invariant-1 en-
sures that before a release is allowed to persist, all previous
writes have been persisted.
≻ Release synchronizes with acquire. Suppose a release
from thread T1 synchronizes with an acquire from thread T2
and issues a read request for the cache-line. There are three
cases.

• Case-1: The acquired cache-line is inM(odified) state in

T1’s L1. In this case, T2’s acquire would cause a coher-
ence request (downgrade) to be sent to T1. Invariant-2
ensures that the acquire will block until the release
and its preceding writes have been persisted, thereby
ensuring this rule.

• Case-2: The acquired cache-line is in the LLC. Invariant-
1 ensures that all writes before the release would have
persisted. Invariant-4 ensures that the release itself
would have persisted.

• Case-3: The acquired cache-line is in NVM. This im-
plies that the release has already persisted. Invariant-1
ensures that all writes before the release also would
have persisted.

≻ Acquire one-sided barrier semantics. This comes nat-
urally out of the consistency model. Any store following the
acquire cannot perform (and hence cannot persist) before
the acquire performs.
≻ Program order address dependency. This again comes
naturally. Sincewrites coalesce, it is impossible for twowrites
to the same variable to be persisted out-of-order.
≻ RMW-atomicity axiom. The only interesting case is
when the RMW is marked an acquire. Invariant-3 ensures
that the write of the RMW persists before following writes,
thereby ensuring this rule.
An example. Consider the required semantics of Figure 1d:
T0’s W1 must persist before T0’s Rel persists, and T0’s Rel
must persist before T1’s W4. RP fulfills the requirements as
follows. Let us assume that when T1’s Acq performs, the
cache-line is held in T0’s L1. Therefore, the Acq will trigger a
downgrade request for the block and hence from Invariant-2,
T1’s Acq will complete only after triggering the persist of
T0’s Rel and its previous writes (W1). Finally, T1’sW4 cannot
be issued to the memory system until T1’s Acq completes,
thereby ensuringW 1

p
−→ Rel

p
−→W 4.

5.2 LRP: Microarchitecture
We have established that LRP enforces the RP rules by up-
holding four invariants (I1-I4). I1 and I2 pose a significant
microarchitectural challenge: on evicting/downgrading a
released cache-line, all prior writes must be tracked and per-
sisted. Conversely, I3 is trivially implemented by altering
the processor pipeline to wait for an ack from the NVM con-
troller on an RMW-acquire. I4 requires a minor alteration in
the directory controller which we discuss more elaborately
in §5.2.3.
Therefore, this section focuses on I1 and I2, presenting a

mechanism that, upon evicting/downgrading a release, can
scan the L1 cache and persist all prior writes. We note that
themechanism does not extend beyond the L1 cache and thus
can be simply implemented by enhancing the L1 controller,
the L1 cache and the processor core. We begin by discussing
the required hardware extensions.

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Mahesh Dananjaya, Vasilis Gavrielatos, Arpit Joshi, Vijay Nagarajan

5.2.1 Hardware extensions

Figure 3 illustrates the LRP hardware extensions, which are
described one by one below.
Per threadmetadata. Each (hardware) thread maintains an
epoch-id counter which gets incremented on every release.
In addition, the number of pending persists are denoted by a
pending-persists counter. Upon issuing a persist for any write,
the pending-persists counter gets incremented; upon receiv-
ing an acknowledgment from the NVM controller for any of
the issued persists, the pending-persists counter gets decre-
mented. The pending-persists counter allows a persisting
release to ensure that all previous writes have persisted.
Per L1-cache-line metadata. Each cache-line maintains:
(1) a min-epoch, that holds the epoch of the earliest write to
the cache-line and (2) a release-bit, that denotes whether the
cache-line holds a value written by a release.

a) Overall Architetcure

L1-Cache

 Release
Epoch Table

Cache Controller

Core

LLC Controller
(Banked) LLC (Banked)

Memory

Controller-1

Memory

Controller-N
LLC

Controllers

Interconnection Network

PersistEngine

Pending-Persists

Epoch Counter

min-epoch Address

c) Release Epoch Table (RET)

xx

xx

xxx

xxx

... ...

b) Cache-line metadata

min-epoch R Tag Data

LRP Extensions

Figure 3: Hardware extensions involved in LRP

Release Epoch Table (RET). A small content-addressable
table, called Release Epoch Table (RET), holds the release-
epoch of cache-lines that holds a value written by a release.
We note that it is possible to maintain a release-epoch for
every L1 cache-line. However, we expect that at any given
moment only a handful of cache-lines will hold values writ-
ten by a release. This is because in most programs variables
that are released account for a small percentage of the pro-
gram’s working dataset. Through our experiments, we have
found that a 32-entry RET for each L1 cache adequately over-
provisions for the needs of most programs. On executing a
release, a RET entry is allocated, storing the release-epoch
and the cache-line’s address. When a release persists, its re-
spective entry in the RET is squashed. To avoid filling the
RET when the capacity reaches a watermark, the persist of
the oldest release in the RET is triggered.
Persist engine. The persist engine is an FSM that takes as an
input a release-epoch er el and scans the L1 cache, examining
all cache-lines and persisting every cache-line with a smaller
min-epoch than er el .
Hardware Overhead. We assume a 32KB L1 cache with

40-bit tags. LRP adds an 8-bit min-epoch and a release-bit
to each cache-line, amounting to 576 bytes for the entire L1.
Note that when the epoch-id overflows, all not-yet-persisted
cache-lines of L1 are persisted and the epochs are restarted.
In addition, each of the 32 RET entries stores the physical
address of a cache-line (i.e., 40 bits, same as the L1 tag) plus
a release-epoch (8-bit), amounting to 192 bytes for the en-
tire RET. In total, LRP requires less than 1KB per hardware
thread.

5.2.2 A mechanism to enforce the release barrier

Having described the hardware extensions in each L1 con-
troller, we now discuss how these extensions are leveraged
to ensure that persisting a released cache-line triggers the
persists of all writes of previous epochs. We then use this
mechanism to enforce invariants I1 and I2. But first, we es-
tablish some necessary terminology.
Terminology. If a cache-line holds a not-yet persisted write,
the cache-line must reside in L1 in modified (M) coherence
state. If a cache-line is in M state and has its release-bit set, it
implies that the cache-line holds a value written by a release;
we refer to such cache-lines as released. If the cache-line is
in M state but its release-bit is not set, it implies that the
cache-line holds a value written by regular writes only; we
refer to such cache-lines as only-written. If a cache-line is
neither released nor only-written, we refer to it as clean.
On a write. On performing a regular write, if the cache-line
is clean, the thread’s epoch-id is stored in the cache-line’s
min-epoch. If the cache-line is not clean, the write need
not overwrite the cache-line’s min-epoch, as the cache-line
already has a valid min-epoch that is smaller than the current
thread’s epoch.
On a release. On a release, the thread’s epoch-id is incre-
mented; the new epoch will be the release-epoch, ensuring
that all writes that precede the release are in an earlier epoch.
There are two distinct cases for the state of the cache-line
that the release intends to write. (1) Clean: the release assigns
its epoch to the cache-line’s min-epoch, it sets the cache-lines
release-bit and it allocates a new entry in RET, where it also
stores its release-epoch. (2) Not clean: the cache-line is first
persisted and then treated as clean (i.e., case (1)). Note that
case (2) implies that the release cannot be coalesced in the
same cache-line with any previous write.
On a read/acquire. No additional action is necessary on a
read or on an acquire.
On an RMW-acquire. An RMWmarked acquire blocks the
pipeline until its write is persisted. Beyond this, additional
action is not necessary.
On downgrading a cache-line. Attempting to downgrade
a cache-line fromM state triggers its persist. If the cache-line
is only-written, then the persist happens off the critical path.
But, if the cache-line is released, then the downgrade cannot
complete before the cache-line has persisted.

Lazy Release Persistency ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

Onevicting awritten/released cache-line. Evicting a cache-
line that is written but not released has the same effect as
downgrading it. If the cache-line is released, then the evic-
tion triggers its persist, but need not wait for the persist to
complete (i.e., the persist is off the critical path).
Note that there is a subtle distinction between evicting

and downgrading a released cache-line: while both actions
cannot complete unless all previous writes/releases persist,
downgrading also requires that the released cache-line itself
persists; there is no such requirement for evicting. To sim-
plify the rest of the discussion, we refer to both downgrading
and eviction as the act of persisting a released cache-line.
To enforce the eviction invariant (i.e., I1) we do not wait for
an ack from the NVM controller for the released cache-line,
while to enforce the downgrade Invariant (i.e., I2), we wait
for the ack.
On persisting a released cache-line. First, the RET is ac-
cessed to read out the release-epoch er el of the cache-line.
The er el along with the address of the cache-line are prop-
agated to the persist engine, which begins scanning the L1
cache, discovering all only-written/released cache-lines with
min-epoch smaller than er el . The persist engine must issue
a persist for all discovered cache lines, but there is a catch:
amongst the discovered cache-lines, there may exist a re-
leased cache-lineCLr with epoch ek and a written cache-line
CLw with epoch ek−1, for which the release one-sided barrier
semantics mandate that CLw must persist before CLr .
Figure 4 illustrates this case. When attempting to persist

the Release (F2), the persist engine tracks down all only-
written/released cache-lines of previous epochs. One of the
tracked cache-lines will be the releasedCLc which holds the
Release (F1) and the only-writtenCLd which holds theWrite
(X). The one-sided persist barrier semantics of the release
mandate that the only-written CLd must persist before the
released CLc .
Persist engine algorithm. The persist engine achieves this
ordering by persisting first all the only-written cache-lines
and then persisting the released cache-lines in their epoch
order. Specifically, the persist engine operates as follows:
as the persist engine scans the L1 cache it keeps discover-
ing cache-lines that must be persisted; on discovering an
only-written cache-line, it immediately schedules its persist,
incrementing the pending-persists counter. Otherwise, on
discovering a released cache-line, it simply buffers it in a lo-
cal queue inside the persist engine. In either case, the engine
immediately resumes scanning the L1 cache.

After the scanning completes, the engine starts polling on
the pending-persist counter, waiting for it to become zero.
Recall, that the pending-persist counter gets decremented
every time an ack from the memory controller reaches the
L1, denoting that a pending persist has completed. When
the pending-persist counter reaches zero, the persist engine
infers that all scheduled persists have completed, and thus it
can start scheduling the persists of the released cache-lines.

00

Write (X)00

Execution 1

Write (A)
00

01

01

00

02

01

02

A B

Y Z

F1

F2

X

release-epoch Address

2

Release (F1)01
Write (B)01

Write (Y)01

Release (F2)02

Write(Z)02

min-epoch

R

Release Epoch Table

Tag

CLa

CLb

CLc

CLd

CLe

Only-Written

Release Bit

Released

Epoch

R

CLc

CLe

Cache

Figure 4: The state of the cache after an example execution.

For instance, in the example of Figure 4, the persist engine
first persists the written cache-linesCla ,CLb , andCLd ; then,
and only after these cache-lines have persisted, the persist
engine will first persist CLc that holds Release (F1) and then
CLe that holds Release (F2).
Enforcing invariants I1 and I2. The persist engine algo-
rithm enforces both I1 and I2 by persisting a release, with
one simple distinction: for I1 (i.e., release eviction) the persist
engine does not wait for the released cache-line to be acked
by the NVM memory controller, whereas for I2 (i.e., release
downgrade) it waits for the released cache-line to be acked.
Persist engine correctness. The persist engine essentially
reorders the persist of writes with the persist of prior releases,
while ensuring that releases persist in their epoch order. This
reordering does not violate RP, which only mandates that
writes be ordered before a subsequent release.

5.2.3 Coherence controller
LRP involves modest (local) changes to the L1 coherence
controller. Specifically, a downgrade request (e.g. a Fwd-GetS
request) for a released cache-line in M state could block until
previous writes in the L1 (if any) persist. It is important to
note that this does not pose a deadlock risk since the persist
actions are guaranteed to complete without themselves being
blocked.
Thus far, we have discussed a stalling implementation

where the cache controller blocks on a Fwd-GetS. Stalling is
not fundamental to our technique. It is possible to avoid
this stalling by moving to a transient state upon a Fwd-
GetS, which logically moves the state to S, waiting on an
acknowledgement from the persist engine to move back to a
stable state. However, we have not experimented with this
non-stalling variant yet.
LRP also involves a minor change to the directory con-

troller. Upon an L1 eviction of a released cache-line, a PutM
request is sent to the directory. Normally, the directorywould
immediately transition to S state. However, the directory now
enters a transient state that would block coherence requests
to (only) that block until it receives a persist acknowledge-
ment. Note that this does not stall the directory controller
and hence is not expected to affect its performance.

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Mahesh Dananjaya, Vasilis Gavrielatos, Arpit Joshi, Vijay Nagarajan

6 Experimental Evaluation
Thus far, we have established that RP must be enforced for
enabling recovery of LFDs. We conducted experiments seek-
ing to answer two main questions. First and foremost, how
much does our one-sided barrier mechanism (LRP) improve
on the state-of-the-art full barrier when enforcing RP? Sec-
ond, how much performance overhead does enforcing RP
incur over a volatile execution that provides no persistency
guarantees? Before we go to the results, we first discuss our
workloads and methodology.

6.1 Workloads
LFDs are essentially nonblocking data structures with persist
barriers inserted for ensuring crash recovery. We obtained 4
of our workloads from the SynchroBench suite [15], which
is a collection of nonblocking data structures. Specifically,
we used the linkedlist [16], hashtable [28], binary search tree
(balanced tree) [32] and skip-list [44] workloads. We also im-
plemented the lock-free queue from Michael and Scott [29].
All workloads are data-race-free in that synchronization op-
erations are properly labelled using releases and acquires.
For each workload, we use a harness that creates 1–32 work-
ers and issues inserts and deletes at 1:1 ratio. Since we only
use insert and delete operations, the update-rate of the bench-
mark suite is 100%. The data structure size refers to the initial
number of nodes in the data structure before statistics are
collected: we vary the size from 8K entries–1M entries, and
the default value is 64K entries.

6.2 Comparison Points
We compare LRP against alternative methods for enforc-
ing RP using full barriers. We also compare against volatile
execution.
LRP. This represents our approach for enforcing RP. Re-
leases and acquires are automatically treated as one-sided
barriers and perform the actions described in §5.
SB. This represents an RP enforcement approach using a
strict full barrier (SB). SB blocks until all the cache lines mod-
ified by the writes before the barrier have been persisted. SB
also has an inter-thread component; when a shared memory
dependency is detected via the coherence protocol, the target
thread blocks until the writes in the ongoing epoch of the
source thread have persisted. Therefore, in order to enforce
RP: (1) an SB has to be inserted before each release to ensure
that all writes before the release persist before the release; (2)
an SB also has to be inserted after the release to ensure that
inter-thread persist ordering is captured. (I.e., to ensure that
when a release synchronizes with an acquire, the acquire
correctly blocks until the release persists.)
BB. This represents an RP enforcement approach using
the the state-of-the-art full barrier [21]. As discussed in §2,
the barrier enforces the persist orderings (both intra-thread
and inter-thread) similarly to SB, but employs an efficient
buffered implementation that minimizes blocking. Hence,

Processor 64-Core (out-of-order)
2.5 GHz

ISA Intel x86-64
L1 I+D -Cache (pvt.) 32KB, 2 cycles, 8-way
line-width 64B
L2 (NUCA, shared) 1MB x64 tiles, 16-way

30 cycles
On-chip Network 2D-Mesh

32 bit flits and links
Coherence Directory-based, MESI
NVM (PCM) cached mode: 120 cycles

uncached mode: 350 cycles
RET (private) 32 Entries

Table 1: Simulator Configuration

we refer to it as buffered barrier (BB). In order to enforce RP:
(1) a BB has to be inserted before each release to ensure that
all writes before the release persist before the release; (2) a
BB has to be inserted after the release and before the acquire
for capturing the inter-thread persist ordering (I.e., to ensure
that when a release synchronizes with an acquire, all writes
following the acquire persist after the release persists).
NOP. Finally, we also compare against volatile execution
which does not enforce any persistency model (NOP).

6.3 Simulator
Our hardware implementation2 is built on top of the pin-
based [27] PRiME [12] simulator, with 64 out-of-order-cores
processor (single thread per core), a logically shared LLC
and multiple memory controllers. Table 1 shows the details
of the simulated processor and memory system.

We model NVM latencies based on the performance mea-
surements observed on Intel Optane persistent memory [20].
Specifically, there are two modes which determine the NVM
latency. In the cached mode, an NVM writeback persists as
soon as it is written to a battery-backed NVM-side DRAM
cache. In the uncached mode, an NVM writeback persists
only after it is actually written to the NVM. We assume
the faster cached mode for our experiments unless specified
otherwise.
PRiME only supports x86-64 ISA and hence enforces the

TSO (Total-Store-Order) consistency model. As such the sim-
ulator lacks releases and acquires in its ISA. Therefore, we
implemented a simple extension to the ISA for taking in
release/acquire annotations. We make use of Pin’s capability
to instrument the binary and generate these special stores
and loads with release/acquire annotations corresponding
to releases and acquires in the program.
It is worth noting that we did not alter the simulator’s

consistency enforcement mechanism to take advantage of
the release/acquire annotations. (This is sound because TSO

2https://github.com/dananjayamahesh/lrp

Lazy Release Persistency ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland
A

ve
ra

ge
 E

xe
cu

tio
n

Ti
m

e
N

or
m

al
iz

ed
 to

 N
O

-P
er

si
st

en
cy

0.5

0.75

1

1.25

1.5

1.75

linkedlist hashmap bstree skiplist queue

SB BB LRP

Figure 5: Execution time normalized to No-Persistency
(lower the better).

stores and loads already have release and acquire semantics
respectively.) However, we take advantage of these annota-
tions to implement our LRP mechanisms in order to enforce
RP.

6.4 Results
LRP outperforms BB and SB. Figure 5 shows the exe-
cution times of LRP, BB and SB normalized to NOP with
32 worker threads and 64K elements. We first observe that
BB outperforms SB, showing a 24%-68% (average 52%) im-
provement over BB. This is primarily because BB, which is
a buffered implementation, avoids stalls in the critical path.
This vindicates our design decision of striving for a buffered
implementation for enforcing RP. How does LRP stack up
against BB? Our key result is that LRP significantly outper-
forms BB, showing a 14%-44% (average 33%) improvement
over BB.
LRP is 2%-8% within NOP. Figure 5 also reveals that LRP
is only 2%-8% (average 6%) within volatile execution, which
suggests that the persistency-related overheads incurred by
LRP is nominal for these workloads.
Why LRP outperforms BB? Recall that the expected ad-
vantage of LRP over BB is that it significantly minimizes
intra-thread persistency overheads being a one-sided barrier.
On the other hand, BB is expected to incur lesser inter-thread
persistency overhead; this is because, whereas LRP blocks on
an acquire to enforce the inter-thread persistency orderings,
BB enforces those lazily well. To understand why LRP out-
performs BB, we conducted experiments to study the effect
of intra- vs inter-thread persistency overheads of LRP and
BB.
In Figure 6, we classify write backs into two categories:

those that are in the critical path of the execution (of the
processor doing the write back) and those that are not. For
BB, a significant 51% of the write backs are in the critical
path, whereas for LRP only 10% of the write backs are in the
critical path. Since almost all of the write back are due to

%
 o

f w
rit

e-
ba

ck
s

in
 th

e
cr

iti
ca

l p
at

h
of

 e
xe

cu
tio

n

0%

25%

50%

75%

100%

linkedlist hashmap bstree skiplist queue

BB LRP

Figure 6: Percentage ofwrite backs in the critical path (lower
the better).

A
ve

ra
ge

 E
xe

cu
tio

n
Ti

m
e

N
or

m
al

iz
ed

 to
 N

O
-P

er
si

st
en

cy

0.5

1

1.5

2

2.5

linkedlist hashmap bstree skiplist queue

SB BB LRP

Figure 7: Execution time normalized to No-Persistency in
the Uncached mode (lower the better).

persistency orderings, this suggests that LRP significantly
minimizes intra-thread persistency overheads in comparison
with BB.

Figure 8 compares the normalized execution time over-
heads of LRP vs BB as the number of worker threads are
varied from 1–32. Greater the number of threads, greater the
probability of inter-thread conflicts and hence potentially
higher inter-thread persist ordering overhead for LRP. How-
ever, as seen in Figure 8, this effect is nominal: for LRP the
persistency overhead remains relatively flat with increasing
threads. For BB there is a marginal decrease in performance
overhead as the number of threads is increased.
The above two experiments suggests that the effect of

intra-thread persistency overhead far outweighs the effect of
inter-thread persistency overhead. Therefore, this vindicates
the design choice of LRP in seeking to optimize the intra-
thread overheads vs inter-thread overheads.
Individual workload analysis.Whereas LRP consistently
outperforms BB, aswe can see from Figure 5, the gap between
LRP and BB varies. One trend we observe is that, for read-
intensive workloads the gap between LRP and BB is smaller

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Mahesh Dananjaya, Vasilis Gavrielatos, Arpit Joshi, Vijay Nagarajan

Number of Threads

%
 o

f P
er

si
st

en
cy

 O
ve

rh
ea

d

0

5

10

15

20

25

1 8 16 32

BB LRP

(a) Linkedlist

Number of Threads

%
 o

f P
er

si
st

en
cy

 O
ve

rh
ea

d

0

20

40

60

80

1 8 16 32

BB LRP

(b) Hashmap

Number of Threads

%
 o

f P
er

si
st

en
cy

 O
ve

rh
ea

d

0

20

40

60

80

1 8 16 32

BB LRP

(c) BST

Number of Threads

%
 o

f P
er

si
st

en
cy

 O
ve

rh
ea

d

0

20

40

60

80

1 8 16 32

BB LRP

(d) Skiplist

Number of Threads

%
 o

f P
er

si
st

en
cy

 O
ve

rh
ea

d

0

20

40

60

80

1 8 16 32

BB LRP

(e) Queue

Figure 8: Percentage overhead over and above No-Persistency, varying the number of threads from 1 through 32 (lower the
better).

than for write-intensive ones. As discussed earlier, BB suffers
from intra-thread conflicts and these are more pronounced
for write-intensive workloads. Thus, we can observe that
linkedlist, a read-intensive workload owing to read-heavy
link traversals, shows a lesser 14% gain over BB compared
to BST, a write-intensive workload which shows a relatively
higher 41% gain.
Cached vs Uncached mode. Recall that up until now we
assumed the cached mode where a write back is said to per-
sist as soon as it reaches the NVM-side DRAM cache. In this
experiment, we consider the uncached mode by disabling
the NVM-side DRAM cache, thereby exposing the slower
NVM to applications. Figure 7 presents the normalized exe-
cution time overhead over NOP on the uncached mode. As
we can see, and comparing with the results on the cache
mode shown in Figure 7, LRP is more robust to this change
when compared with BB or SB. LRP continues to incur a
nominal 3%-19% (average 10%) overhead compared to NOP.
BB (and SB) are affected more by this change because they
have more writebacks in the critical path when compared to
LRP. Thus, LRP shows a significant 53% improvement over
BB in this configuration.
Sensitivity to data structure size. In order to measure
the sensitivity of LRP to data structure size, we varied the
size from 8K–1M nodes. However, we did not observe a sig-
nificant change in the results (and hence we do not show
these results). Changing the number of elements in the data
structure largely affects inter-thread conflicts compared to
intra-thread. Our observation is that even though the num-
ber of inter-thread conflicts changes with data structure size,
it does not affect the execution time overheads significantly
because, as established earlier, the effect of intra-thread con-
flicts are more significant.

7 Conclusion
We have argued that languages must support ordering prim-
itives that are strong enough to enable recovery of log-free
data structures (LFDs) without compromising on efficiency.
Specifically, a release (and the writes before it) must per-
sist before the writes that follow the corresponding acquire
persist. We formalize this ordering requirement via a persis-
tency model called release persistency (RP). The challenge
is to realize RP via one-sided barriers, while also retaining a
buffered implementation where visibility does not wait for
persistency.
We addressed this challenge by taking inspiration from

lazy release consistency, a protocol from the DSM litera-
ture that enforces release consistency lazily. Our proposed
mechanism dubbed lazy release persistency (LRP) buffers
writes in the cache until an acquire is detected, at which
point the buffered writes are persisted. Experiments on 5
commonly used LFDs suggest that LRP efficiently enforces
RP, significantly improving upon the state of the art.

Acknowledgments
We thank Aasheesh Kolli, Antonios Katsarakis, Adarsh Patil
and the anonymous reviewers for their valuable feedback.
This work was supported by EPSRC grant EP/L01503X/1 to
the University of Edinburgh.

References
[1] Mohammad Alshboul, James Tuck, and Yan Solihin. 2018. Lazy Persis-

tency: A High-Performing and Write-Efficient Software Persistency
Technique (ISCA ’18). IEEE Press, 439–451.

[2] ARM Limited 2018. ARM Architecture Reference Manual ARMv8, for
ARMv8-A architecture profile. ARM Limited.

[3] Hagit Attiya, Rachid Guerraoui, Danny Hendler, Petr Kuznetsov,

Lazy Release Persistency ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

Maged M. Michael, and Martin Vechev. 2011. Laws of Order: Expen-
sive Synchronization in Concurrent Algorithms Cannot Be Eliminated
(POPL ’11). ACM, New York, NY, USA, 487–498.

[4] Guy E. Blelloch, Phillip B. Gibbons, Yan Gu, Charles McGuffey, and
Julian Shun. 2018. The Parallel Persistent Memory Model (SPAA ’18).
ACM, New York, NY, USA, 247–258.

[5] Hans-J. Boehm. 2012. Can Seqlocks Get Along with Programming
Language Memory Models? (MSPC ’12). ACM, New York, NY, USA,
12–20.

[6] Hans-J. Boehm and Dhruva R. Chakrabarti. 2016. Persistence Program-
ming Models for Non-volatile Memory (ISMM 2016). ACM, New York,
NY, USA, 55–67.

[7] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. 2014. At-
las: Leveraging Locks for Non-volatile Memory Consistency (OOPSLA
’14). ACM, New York, NY, USA, 433–452.

[8] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Ra-
jesh K. Gupta, Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps:
Making Persistent Objects Fast and Safe with Next-generation, Non-
volatile Memories (ASPLOS XVI). ACM, New York, NY, USA, 105–118.

[9] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek,
Benjamin Lee, Doug Burger, and Derrick Coetzee. 2009. Better I/O
Through Byte-addressable, Persistent Memory (SOSP ’09). ACM, New
York, NY, USA, 133–146.

[10] Tudor David, Aleksandar Dragojević, Rachid Guerraoui, and Igor
Zablotchi. 2018. Log-Free Concurrent Data Structures. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18). USENIX Association,
Boston, MA, 373–386. https://www.usenix.org/conference/atc18/
presentation/david

[11] Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Pe-
trank. 2018. A Persistent Lock-free Queue for Non-volatile Memory
(PPoPP ’18). ACM, New York, NY, USA, 28–40.

[12] Yaosheng Fu and David Wentzlaff. 2014. PriME: A parallel and dis-
tributed simulator for thousand-core chips. In 2014 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS).
116–125.

[13] Kourosh Gharachorloo, Anoop Gupta, and John L. Hennessy. 1991.
Two Techniques to Enhance the Performance of Memory Consistency
Models. In ICPP (1). 355–364.

[14] Vaibhav Gogte, Stephan Diestelhorst, William Wang, Satish
Narayanasamy, Peter M. Chen, and Thomas F. Wenisch. 2018. Persis-
tency for Synchronization-free Regions (PLDI 2018). ACM, New York,
NY, USA, 46–61.

[15] Vincent Gramoli. 2015. More Than You Ever Wanted to Know About
Synchronization: Synchrobench, Measuring the Impact of the Synchro-
nization on Concurrent Algorithms (PPoPP 2015). ACM, New York, NY,
USA, 1–10.

[16] Timothy L. Harris. 2001. A Pragmatic Implementation of Non-blocking
Linked-Lists. In Proceedings of the 15th International Conference on
Distributed Computing (DISC ’01). Springer-Verlag, London, UK, UK,
300–314. http://dl.acm.org/citation.cfm?id=645958.676105

[17] Maurice Herlihy and Nir Shavit. 2008. The Art of Multiprocessor Pro-
gramming. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA.

[18] Intel. 2015. Intel and Micron Produce Breakthrough Memory Tech-
nology. https://newsroom.intel.com/news-releases/intel-and-micron-
produce-breakthrough-memory-technology/.

[19] Joseph Izraelevitz, Hammurabi Mendes, and Michael L. Scott. 2016.
Linearizability of Persistent Memory Objects Under a Full-System-
Crash Failure Model. In Distributed Computing - 30th International
Symposium, DISC 2016, Paris, France, September 27-29, 2016. Proceedings.
313–327.

[20] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-
saman Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subra-
manya R. Dulloor, Jishen Zhao, and Steven Swanson. 2019. Ba-

sic Performance Measurements of the Intel Optane DC Persistent
Memory Module. CoRR abs/1903.05714 (2019). arXiv:1903.05714
http://arxiv.org/abs/1903.05714

[21] Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and Stratis Viglas. 2015.
Efficient Persist Barriers for Multicores (MICRO-48). ACM, New York,
NY, USA, 660–671.

[22] Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and Stratis Viglas. 2018.
DHTM: Durable Hardware Transactional Memory (ISCA ’18). IEEE
Press, 452–465.

[23] Pete Keleher, Alan L. Cox, and Willy Zwaenepoel. 1992. Lazy Release
Consistency for Software Distributed Shared Memory. SIGARCH
Comput. Archit. News 20, 2 (April 1992), 13–21.

[24] Aasheesh Kolli, Vaibhav Gogte, Ali Saidi, StephanDiestelhorst, PeterM.
Chen, Satish Narayanasamy, and Thomas F. Wenisch. 2017. Language-
level Persistency (ISCA ’17). ACM, New York, NY, USA, 481–493.

[25] Aasheesh Kolli, Jeff Rosen, Stephan Diestelhorst, Ali Saidi, Steven
Pelley, Sihang Liu, Peter M. Chen, and Thomas F. Wenisch. 2016.
Delegated Persist Ordering (MICRO-49). IEEE Press, Piscataway, NJ,
USA, Article 58, 13 pages. http://dl.acm.org/citation.cfm?id=3195638.
3195709

[26] Youyou Lu, Jiwu Shu, Long Sun, andOnurMutlu. 2014. Loose-Ordering
Consistency for persistent memory. In 2014 IEEE 32nd International
Conference on Computer Design (ICCD). 216–223.

[27] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-
wood. 2005. Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation (PLDI ’05). ACM, New York, NY, USA, 190–
200.

[28] Maged M. Michael. 2002. High Performance Dynamic Lock-free Hash
Tables and List-based Sets (SPAA ’02). ACM, New York, NY, USA,
73–82.

[29] Maged M. Michael and Michael L. Scott. 1996. Simple, Fast, and Practi-
cal Non-blocking and Blocking Concurrent Queue Algorithms (PODC
’96). ACM, New York, NY, USA, 267–275.

[30] Sanketh Nalli, Swapnil Haria, Mark D. Hill, Michael M. Swift, Haris
Volos, and Kimberly Keeton. 2017. An Analysis of Persistent Memory
Use withWHISPER (ASPLOS ’17). ACM, New York, NY, USA, 135–148.

[31] Dushyanth Narayanan and Orion Hodson. 2012. Whole-system Per-
sistence (ASPLOS XVII). ACM, New York, NY, USA, 401–410.

[32] Aravind Natarajan and Neeraj Mittal. 2014. Fast Concurrent Lock-free
Binary Search Trees (PPoPP ’14). ACM, New York, NY, USA, 317–328.

[33] Faisal Nawab, Joseph Izraelevitz, Terence Kelly, Charles B. Morrey III,
Dhruva R. Chakrabarti, and Michael L. Scott. 2017. Dalí: A Periodically
Persistent Hash Map. In 31st International Symposium on Distributed
Computing (DISC 2017) (Leibniz International Proceedings in Informatics
(LIPIcs)), Andréa W. Richa (Ed.), Vol. 91. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany, 37:1–37:16.

[34] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. 2014. Memory
Persistency (ISCA ’14). IEEE Press, Piscataway, NJ, USA, 265–276. http:
//dl.acm.org/citation.cfm?id=2665671.2665712

[35] Azalea Raad and Viktor Vafeiadis. 2018. Persistence Semantics for
Weak Memory: Integrating Epoch Persistency with the TSO Memory
Model. Proc. ACM Program. Lang. 2, OOPSLA, Article 137 (Oct. 2018),
27 pages.

[36] Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu,
and Onur Mutlu. 2015. ThyNVM: Enabling Software-Transparent
Crash Consistency in Persistent Memory Systems (MICRO-48). Asso-
ciation for Computing Machinery, New York, NY, USA, 672–685.

[37] Michael L. Scott. 2013. Shared-Memory Synchronization. Morgan &
Claypool Publishers.

[38] Seunghee Shin, James Tuck, and Yan Solihin. 2017. Hiding the Long
Latency of Persist Barriers Using Speculative Execution (ISCA ’17).
Association for Computing Machinery, New York, NY, USA, 175–186.

[39] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and

https://www.usenix.org/conference/atc18/presentation/david
https://www.usenix.org/conference/atc18/presentation/david
http://dl.acm.org/citation.cfm?id=645958.676105
https://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough-memory-technology/
https://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough-memory-technology/
http://arxiv.org/abs/1903.05714
http://arxiv.org/abs/1903.05714
http://dl.acm.org/citation.cfm?id=3195638.3195709
http://dl.acm.org/citation.cfm?id=3195638.3195709
http://dl.acm.org/citation.cfm?id=2665671.2665712
http://dl.acm.org/citation.cfm?id=2665671.2665712

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Mahesh Dananjaya, Vasilis Gavrielatos, Arpit Joshi, Vijay Nagarajan

Roy H. Campbell. 2011. Consistent and Durable Data Structures for
Non-volatile Byte-addressable Memory (FAST’11). USENIX Associ-
ation, Berkeley, CA, USA, 5–5. http://dl.acm.org/citation.cfm?id=
1960475.1960480

[40] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011.
Mnemosyne: Lightweight Persistent Memory (ASPLOS XVI). ACM,
New York, NY, USA, 91–104.

[41] William Wang and Stephan Diestelhorst. 2019. Persistent Atomics
for Implementing Durable Lock-Free Data Structures for Non-Volatile
Memory (Brief Announcement) (SPAA ’19). Association for Computing
Machinery, New York, NY, USA, 309–311.

[42] Andrew Waterman, Yunsup Lee, David A. Patterson, Krste Asanovic,
Volume I User level Isa, Andrew Waterman, Yunsup Lee, and David
Patterson. 2014. The RISC-V Instruction Set Manual.

[43] Song Wu, Fang Zhou, Xiang Gao, Hai Jin, and Jinglei Ren. 2019. Dual-
Page Checkpointing: An Architectural Approach to Efficient Data
Persistence for In-Memory Applications. ACM Trans. Archit. Code
Optim. 15, 4, Article Article 57 (Jan. 2019), 27 pages.

[44] Deli Zhang and Damian Dechev. 2016. An Efficient Lock-Free Loga-
rithmic Search Data Structure Based on Multi-dimensional List. 2016
IEEE 36th International Conference on Distributed Computing Systems
(ICDCS) (2016), 281–292.

http://dl.acm.org/citation.cfm?id=1960475.1960480
http://dl.acm.org/citation.cfm?id=1960475.1960480

	Abstract
	1 Introduction
	1.1 Contributions

	2 Background
	2.1 Release Consistency
	2.2 Persistency Models
	2.3 Log-free data structures (LFDs)

	3 Limitations of ARP
	3.1 ARP semantics
	3.2 ARP implementation
	3.3 Why not simply fix ARP?

	4 Release Persistency
	4.1 Formal Specification
	4.2 RP reduces conflicts

	5 Lazy Release Persistency
	5.1 LRP Overview
	5.2 LRP: Microarchitecture

	6 Experimental Evaluation
	6.1 Workloads
	6.2 Comparison Points
	6.3 Simulator
	6.4 Results

	7 Conclusion
	Acknowledgments
	References

