
Kite: Efficient and Available Release Consistency for the Datacenter
Vasilis Gavrielatos, Antonios Katsarakis, Vijay Nagarajan, Boris Grot, Arpit Joshi∗

The University of Edinburgh, ∗ Intel
FirstName.LastName@ed.ac.uk, ∗ FirstName.LastName@intel.com

Abstract
Key-Value Stores (KVSs) came into prominence as highly-
available, eventually consistent (EC), “NoSQL” Databases,
but have quickly transformed into general-purpose, program-
mable storage systems. Thus, EC, while relevant, is no longer
sufficient. Complying with the emerging requirements for
stronger consistency, researchers have proposed KVSs with
multiple consistency levels (MCL) that expose the consis-
tency/performance trade-off to the programmer. We argue
that this approach falls short in both programmability and
performance. For instance, the MCL APIs proposed thus far,
fail to capture the ordering relationship between strongly- and
weakly-consistent accesses that naturally occur in programs.

Taking inspiration from shared memory, we advocate Re-
lease Consistency (RC) for KVSs. We argue that RC’s one-
sided barriers are ideal for capturing the ordering relationship
between synchronization and non-synchronization accesses
while enabling high-performance.

We present Kite, the first highly-available, replicated KVS
that offers a linearizable variant of RC for the asynchronous
setting with individual process and network failures. Kite
enforces RC barriers through a novel fast/slow path mech-
anism that leverages the absence of failures in the typical
case to maximize performance while relying on the slow path
for progress. Our evaluation shows that the RDMA-enabled
and heavily-multithreaded Kite achieves orders of magnitude
better performance than Derecho (a state-of-the-art RDMA-
enabled state machine replication system) and significantly
outperforms ZAB (the protocol at the heart of Zookeeper).
We demonstrate the efficacy of Kite by porting three lock-
free shared memory data structures, and showing that Kite
outperforms the competition.

CCS Concepts • Computer systems organization −→ Cloud
computing; Availability; • Software and its engineering −→
Consistency;

Keywords Consistency, Availability, Fault tolerance, Repli-
cation, RDMA

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PPoPP ’20, February 22–26, 2020, San Diego, CA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6818-6/20/02. . . $15.00
https://doi.org/10.1145/3332466.3374516

1 Introduction
Key-Value Stores (KVSs) came into prominence over a decade
ago as highly-available, eventually consistent (EC), “NoSQL”
Databases with a get/put API. Since then, they have enjoyed
widespread application with use-cases that include graph ap-
plications, messaging systems, coordination services, HPC
applications and deep learning [4, 13, 34, 87]. Thus, the
KVS has today transformed into a general-purpose, pro-
grammable, distributed storage system [87], coming to re-
semble distributed shared memory (DSM). However, there
is a key difference: unlike a traditional DSM, a KVS must
also provide high availability; data must remain constantly
accessible in the face of individual machine and network
failures.

During the KVS’ transformation, one thing became ap-
parent: EC was no longer sufficient. Stronger consistency
primitives are essential for achieving coordination and syn-
chronization [8]. Indeed, in explaining why twitter’s KVS was
extended with strongly consistent primitives, twitter engineers
concede: "while EC systems have their place in data storage,
they don’t cover all of the needs of our customers" [87].

However, strongly consistent operations invariably incur a
higher performance overhead than more relaxed ones. For
instance, in an asynchronous environment, implementing
atomic Read-Modify-Writes (RMWs) is costlier than imple-
menting linearizable reads/writes, which in turn is costlier
than implementing weakly consistent reads/writes [7, 30, 58].

Faced with these opposing requirements, researchers have
come up with a solution that now comprises the state-of-the-
art: multiple consistency level (MCL) KVS [5, 19, 34, 52, 78,
87]. MCL KVSs enable the programmer to trade consistency
for performance by requiring them to specify the consistency
needs for each access. We find the MCL API unsatisfying on
two grounds: programmability and performance.
• Programmability. The API should not ask programmers

to reason about the implementation-centric consistency
level for each and every access; rather it should provide
them with an intuitive, programmer-centric interface.

• Performance. Specifying the consistency level of indi-
vidual accesses fails to capture the ordering relationship
between strong and weak accesses that naturally occur in
programs. For example, consider the ubiquitous producer-
consumer synchronization pattern. The producer creates an
object, writing each of its 1000 fields, and then raises a flag
to announce that the object is ready to be read. Meanwhile
the consumer polls on the flag; when it finally sees it raised,
it proceeds to read the object. Note that the intended behav-
ior is that when the raised flag becomes visible, the object

https://doi.org/10.1145/3332466.3374516

and its 1000 fields must become visible, too. The only way
to achieve this behavior in today’s MCL API is to label
all of the accesses as strong. Clearly, this is suboptimal
performance-wise. An ideal API would allow for the writes
to the fields to be reordered but ensure that all of these
writes take effect before the write to flag.

To remedy this situation, we pose the question: Is there a
consistency API that simplifies programming, while allowing
for the system to extract maximum performance?

1.1 A Case for Release Consistency
To answer the question, we turn to the shared memory com-
munity which has grappled with these very questions. After
a 30-year debate, the community has converged on the Data-
Race-Free (DRF) programming paradigm [1] (e.g. C/C++,
Java, OpenCL). DRF is a contract between the programmer
and the system: if the programmer writes programs free of
data races and correctly annotates synchronization operations,
the system will provide strong consistency. Under the hood,
the system honors the contract through a DRF-compliant
memory model, typically a variant of Release Consistency
(RC) [6, 25, 57, 86]. In this work, we propose the adoption
of the DRF-compliant RC for distributed KVSs.

Going back to the question we posed earlier, we argue that
RC ticks both boxes.
• Programmability. Instead of asking the programmer to

reason about consistency, RC requires them to explicitly
annotate synchronization operations. RC offers the typi-
cal read/write/RMW API with a twist: when writing to a
synchronization variable (e.g. raising a flag or releasing a
lock), that write must be marked as a release. When read-
ing from a synchronization variable (e.g. testing a flag, or
grabbing a lock), that read must be marked as an acquire.

• Performance. An RC enforcement mechanism can po-
tentially leverage programmer annotations for reordering
non-synchronization (relaxed) operations, while enforcing
ordering (RC’s one-sided barrier semantics) only when
synchronization is required. However, to our knowledge
the performance benefits of RC have not been explored
previously in an asynchronous environment with individ-
ual machine and network failures, mainly because there is
no prior work on how to efficiently enforce RC’s barrier
semantics in this environment.

1.2 Kite
In this work, we present Kite, the first highly-available, repli-
cated, RDMA-enabled KVS that offers RCLin, a linearizable
variant of RC (§2.3). We note that even though RC variants
have been offered previously in DSM systems [17, 42, 44, 74],
we are, to the best of our knowledge, the first to offer a highly
available RC in an asynchronous setting with individual ma-
chine and network failures. In building Kite, we address three
challenges:

1. Identifying protocol mappings (§3). The basic premise

of RC is maximizing performance by providing strong con-
sistency only when required. To achieve this we must iden-
tify protocols with different consistency/performance trade-
offs that map to the RC API. We identify as ideal candi-
dates three asynchronous, fully-distributed protocols: Even-
tual Store (ES) [15], multi-writer-ABD [59] (an ABD [7]
variant, dubbed ‘ABD’) and Paxos [48]. Specifically, relaxed
reads and writes are mapped to ES, an efficient EC protocol
that executes reads locally; releases and acquires are mapped
to ABD, that offer linearizable reads and writes; and finally,
RMWs are mapped to Paxos.

2. Enforcing RC barrier semantics (§4, §5). Identifying
protocol mappings is not enough; the chosen protocols must
be augmented to enforce RC’s barrier semantics. The chal-
lenge is to do this while retaining the efficiency of ES—in par-
ticular its “local reads” property. Alas, ensuring that reads are
always local and consistent in an asynchronous environment
is challenging. Kite sidesteps this problem with a fast/slow
path mechanism: the blocking fast path executes reads lo-
cally, albeit assuming a synchronous environment, whereas
the nonblocking slow path can operate on an asynchronous
environment, albeit sacrificing local reads. Kite alternates be-
tween the two paths. In the common case where messages are
delivered on time and machines do not fail, Kite operates on
the fast path. When asynchrony presents itself (e.g. through a
big network delay), Kite conservatively falls back to the slow
path temporarily, before reverting to the fast path. Thus, Kite
hinges on the asynchronous slow path for progress, exploiting
the synchronous fast path for performance. We describe this
mechanism in Section 4 and we rigorously prove it enforces
RC in Section 5.

3. Efficient system implementation (§6). We implement ES,
ABD and Paxos from scratch and integrate them with Kite’s
slow/fast path mechanism. The salient design points of Kite
are: a highly multi-threaded implementation (§6.1), the adap-
tation of MICA [54] (a state-of-the-art KVS) (§6.2) and the
efficient use of RDMA (§6.3).

Limitations. Kite is an in-memory KVS, replicated within
a datacenter for reliability, targeting the typical replication
degree (ranging from 3 to 7 [34]). Therefore, Kite should not
be expected to scale to hundreds of replicas. Finally, Kite
does not handle replication beyond a datacenter (i.e., geo-
replication) and should be combined with other systems for
durability (e.g., failure of the entire datacenter).

Contributions.
• We introduce Kite, a replicated, RDMA-enabled KVS that

offers RCLin in an asynchronous environment with network
and crash-stop failures.

• Kite enforces RC’s barriers efficiently via a fast-path/slow-
path mechanism, that leverages the absence of failures in
the common case to maximize performance, while hinging
on the slow path for progress.

• Kite implements ABD, ES and Paxos and combines them

with the RC barrier semantics in an RDMA-enabled, heav-
ily multi-threaded manner.

• We rigorously prove that the fast-path/slow-mechanism of
Kite enforces RC.

• Kite significantly outperforms Derecho [12] (a state-of-
the-art RDMA state machine replication system) and an
in-house, RDMA-enabled, multi-threaded implementation
of ZAB [69] (the replication protocol at the heart of Zoo-
keeper [34]) on a set of micro-benchmarks.

• We further demonstrate the efficacy of Kite by porting three
lock-free shared-memory workloads using the Kite API,
and showing that Kite outperforms the competition.

2 Preliminaries
2.1 Kite: A Replicated, Available KVS

Execution model. Kite, as is typical of replicated KVSs, is
a deployment of 3-9 machines. (We use the terms machines,
nodes, servers and replicas interchangeably.) Every machine
holds the entire KVS in-memory. In each machine, a number
of threads, called workers, execute client requests. Kite’s
clients use the Kite API to access its objects. A client is
connected to a worker via a session. The order in which
requests appear within a session constitutes the session order.
Each worker is typically responsible for multiple sessions.

Failure Model. Kite assumes an asynchronous model, with
network and crash-stop failures. Under this model, there is
no need for synchronized clocks or bounds in message trans-
mission delays. Individual processes (machines) might fail by
crashing, but do not operate in a Byzantine manner. Network
failures in either network links or messages may occur. En-
suring availability is one of the primary goals of Kite: as long
as a majority of nodes (and their links) are alive, failures do
not cause a disruption in Kite’s operation, i.e. client requests
mapped to these nodes are executed normally.

Asynchronous replication protocols. The objects of the KVS
are replicated in multiple nodes to tolerate failures. An asyn-
chronous (aka nonblocking [30]) replication protocol is then
deployed to enforce consistency and fault tolerance across
all replicas. A common theme across asynchronous protocols
is the notion of quorums, which refers to a subset of the ma-
chines that hold a replica. For example a write may need to
be propagated to at least a quorum of replicas before it is said
to have completed. Throughout this paper, the term quorum
refers to any majority of replicas.

2.2 Consistency Models

Eventual Consistency (EC). A number of different weak
consistency models with various guarantees [77] are catego-
rized as variants of EC [83], all of which mandate that replicas
must converge in the absence of new updates. We identify
per-key Sequential Consistency (per-key SC) [19, 55, 81] as
an intuitive, well-defined safety variant of EC. Per-key SC
mandates that: 1) all sessions agree on one single order of

writes for any given key (aka write serialization) and 2) reads
and writes to the same key appear to perform in session order.

Sequential Consistency (SC). SC mandates that reads and
writes (across all keys) from each session appear to take effect
in some total order that is consistent with session order [47].
To put it succinctly, SC enforces session ordering.

Linearizability (lin). In addition to SC’s constraints, lin man-
dates that each request appears to take effect instantaneously
at some point between its invocation and completion [31].
Thus, lin not only enforces session ordering, but also pre-
serves real-time behavior.

2.3 Release Consistency
RCSC provides a sequentially consistent variant of RC. RCSC
has strong enough primitives that lets one (provably) achieve
well-known synchronization patterns, including wait- and
obstruction-free concurrent implementations of linearizable
objects, as well as mutual exclusion [8, 30].

We start the discussion with RCSC and then extend it to
RCLin, which is the consistency model that Kite provides.
Table 1 describes the RCSC API and the session orderings
enforced, where p→q means that operation p appears to take
effect before operation q. In Section 5, we formalize RC
axiomatically.

SC semantics (release/acquire→release/acquire). RCSC en-
forces SC among releases and acquires; i.e. releases and ac-
quires appear to take effect in session order.

Release barrier semantics (all→release). A release acts as
a one-way barrier for all prior accesses; i.e., a release takes
effect only after writes and reads, before the release, take
effect. Informally this means that, by the time the release
write becomes visible to another session: (1) all writes that
precede the release must be visible to that session and (2) all
reads that precede the release must have returned.

Acquire barrier semantics (acquire→all). An acquire acts
as a one-way barrier for subsequent accesses; i.e., reads and
writes after the acquire, appear to take effect after the acquire
takes effect. Informally, when an acquire observes the value
of a release from another session: (1) a read that follows the
acquire must be able to observe any write that precedes the
release and (2) a write that follows the acquire must not be
able to affect any read that precedes the release.

Barrier invariant. The two types of barriers cooperate to
enforce a single invariant: when an acquire reads from a
release, the accesses that follow the acquire appear to take
effect after the accesses before the release.

Enforcing RCLin. Kite enforces a stronger variant of RCSC,
dubbed RCLin. RCLin shares the same API with RCSC and
enforces the same orderings (Table 1). The only difference
is that RCLin preserves lin among releases and acquires. For
example, in RCLin, if a release has completed in real-time,
then any subsequent acquire in real-time (from any session)
is guaranteed to observe the release’s result; the same does

RCSC/RCLin API
Command Ordering Kite mapping

Relaxed
Read/Write

no ordering Eventual Store [15]

Release
Write

all ⇒ release
release ⇒ acquire

ABD [59]

Acquire
Read

acquire ⇒ all ABD [59]

RMW
all ⇒ RMW
RMW ⇒ all

Paxos [48]

Table 1. RCSC/RCLin API, orderings and Kite mappings.

not hold for RCSC. In summary, RCLin allows Kite to offer
consistency semantics that range from per-key SC to lin.

3 Setting the Stage: Kite Mappings
Kite maps three existing protocols to the RCLin API as shown
in Table 1. In this section, we explain our rationale behind
these choices and provide an overview of each of the three
protocols. We begin with Lamport logical clocks [46], as they
are a vital part of all three protocols.

3.1 Lamport Logical Clock (LLCs)
An LLC [46] is a pair < v,mid > of a monotonically increas-
ing version number, v, and the id of the machine that creates
the LLC, mid . An LLC A is said to be bigger than LLC B, if
A’s version number is bigger; if their versions are equal, the
machine id is used as a tie-breaker.

LLCs make it possible to generate a globally unique “time”
for an event without any coordination. A machine can create
a unique LLC by incrementing a local version and its own
machine id. LLCs can be then leveraged to order events (e.g.
serialize writes) in a distributed manner, without the need for
communication or with explicit ordering points (e.g. a master
node). Indeed, all three protocols employed in Kite leverage
LLCs to avoid centralized points when ordering events.

3.2 Eventual Store for relaxed reads and writes
Eventual Store (ES) [15] achieves per-key SC for replicated
KVSs by maintaining an LLC for every key, using which
it is able to provide a unique LLC for every write, thereby
serializing writes to each key.

Why ES? ES is extremely efficient, incurring no more than
the absolutely necessary protocol overhead: reads execute
locally and writes broadcast the new value, an action that is
necessary for fault tolerance. Besides, ES is naturally asyn-
chronous and tolerant to failures.

3.3 ABD for releases and acquires
The multi-writer-ABD algorithm [59] builds on the seminal
ABD algorithm [7] to emulate linearizable reads and writes
on replicated data over a message passing system, on an
asynchronous environment. (For brevity, we refer to multi-
writer-ABD simply as ABD.)

Why ABD? For four reasons: 1) ABD offers lin in an asyn-
chronous environment, allowing Kite to offer lin among re-

leases and acquires. 2) ABD is very efficient: it is fully dis-
tributed and it naturally lends itself to a multi-threaded im-
plementation. 3) ABD is designed explicitly for full writes,
which do not require consensus[30], thereby avoiding the im-
plications of the consensus impossibility result [22]. 4) ABD
is a natural match for ES: both protocols use broadcasts and
per-key LLCs, enabling sharing of metadata and network op-
timizations across them. Below, we describe ABD, noting
that an LLC is maintained for each key.

Write. A write request performs two broadcast rounds, gath-
ering responses from a quorum of machines for each round. A
first lightweight round that reads the per-key LLCs of remote
replicas, and a second round that broadcasts the new value
along with its LLC.

Read. A read request performs one broadcast round where it
reads the keys and LLCs from a quorum of replicas, returning
the value with the highest LLC. If the value to be returned
has not been seen by a quorum of replicas, then a second
broadcast is performed with that value and its LLC.

3.4 Paxos for RMWs
Paxos [48] is a state machine replication protocol that allows
distributed processes to achieve consensus in an asynchronous
environment amidst machine and network failures.

Why Paxos? RMWs require consensus. Out of the myriad of
consensus protocols, we choose Paxos because it is a well-
established protocol that allows for high-performance imple-
mentations: it can be implemented in a per-key fashion, en-
abling concurrency among different keys, and without leaders
or centralized points that hinder availability and concurrency.
Below, we first provide a brief overview of the Paxos protocol
and then we describe how we incorporate Paxos in Kite to
implement RMWs.

Basic Paxos operation. Paxos requires two broadcast phases:
a propose phase and an accept phase. When a replica acks
an accept for a Paxos command, it is said to accept the com-
mand. If a command is accepted by a quorum of replicas, then
the command is said to have committed. In practice (and in
Kite), a commit message is also broadcast to notify the rest of
the replicas. Therefore, a Paxos command in Kite typically
completes within three broadcast rounds.

Per-key. Because RMWs to different keys commute, they
need not be ordered [49]. This observation allows us to exe-
cute Paxos at a per-key granularity, uncovering the available
request-level parallelism across RMWs to different keys and
enabling a multi-threaded implementation, as threads need to
synchronize only when accessing the same key.

Leaderless. Lamport proposes that when Paxos is executed
repeatedly (i.e., multi-decree Paxos), it should elect a sta-
ble leader [48]. The stable leader can execute the propose
phase for only the first command it commits, and avoid it for
all the rest. Nonetheless, Kite implements leaderless Basic-
Paxos [48], similarly to [70]. In doing so, we concede the

extra round-trip per RMW, but we maintain the properties
that made us choose Paxos in the first place: the constant
availability, and the concurrent/decentralized nature of the
protocol.

4 Enforcing RC Barrier Semantics
In the previous section, we described how Kite maps the RC
API to existing protocols. This is not sufficient to enforce
RC barrier semantics, however. Kite enforces the barrier se-
mantics through its fast/slow path mechanism, relying on a
nonblocking slow path for progress, while leveraging a block-
ing fast path for performance. We first provide the big picture,
explaining the problem that the mechanism addresses and its
solution (§4.1). We then provide an in-depth description of
the mechanism (§4.2) and discuss its optimizations (§4.3).

4.1 Big picture
Consider the example shown in Figure 1, assuming that ses-
sions, S1 and S2, are mapped to different machines. (For
brevity, we refer to the machines using the session names.)
RC mandates that if S2’s read of f lag (acquire) returns 1,
then its read of X must also return 1. Since relaxed reads in
Kite are mapped to ES, they are performed locally. Therefore,
to enforce RC, Kite must ensure that S1’s write to X reaches
S2 before the write (release) to f lag.

Fast path: RC & ES without asynchrony. In the common
case where machines operate without big delays, the condition
is met in Kite through the fast path which enforces one simple
rule: before the release begins its execution, Kite ensures that
each write prior to the release is acked by all replicas. This
rule enables a relaxed read to execute locally without violating
RC. by the time the acquire from S2 returns f lag= 1, S2 must
have already acked the write to X , and thus can execute its
read to X locally via ES.

The problems caused by asynchrony. Alas the fast path rule
that requires each write before a release to be acknowledged
by all replicas cannot be enforced in an asynchronous envi-
ronment. For instance, assume that S1 does not receive an
ack from S2 for the write to X . The ack may have not arrived
because S2 has failed or because S2 is slow. That presents S1
with a dilemma: on the one hand, if S2 has failed, S1 should
not block indefinitely waiting for an ack; on the other hand, if
S2 is alive, S1 should wait for its ack or risk S2 reading X = 0.
Even worse, if S2 is alive but has simply missed the write
from S1, S1 can neither wait, as it will block indefinitely, nor
move on, as it will violate RC.

Kite’s solution: The fast/slow path. Kite solves this prob-
lem through its fast/slow path mechanism: on an acquire, S2
discovers whether it has lost a write message. If so, S2 deems
its entire local storage to be stale (out-of-epoch), transitioning
itself to the slow path, where it must refresh each of the keys
before accessing them again locally (i.e. with ES). Note that,
unless S2 performs another acquire, it only needs to refresh
each key once, because in RC, the relaxed accesses need only

time

Initially X = 0, flag= 0
S1

T0

T1

T2

T3

Write(X, 1)
Release(flag, 1)

S2

Acquire(flag, 1)
Read(X, 1)

Figure 1. Producer-consumer pattern between S1 and S2.

be as fresh as the latest acquire.
While rendering the entire local storage stale may appear

as an extreme measure, we note that this overhead is rarely
incurred, because in a controlled, datacenter environment,
asynchrony is relatively rare [11, 43]. More importantly, shift-
ing all the overhead to the misbehaving machine allows for a
very efficient fast path, as it ensures that asynchrony-related
overheads are incurred only when asynchrony manifests.

Below we sketch how the fast/slow path mechanism will
work for the example in Figure 1.
≻ On a release. Before writing to f lag (release), S1 attempts
to gather acks from all machines for its write to X within a
timeout. If the timeout expires and S1 has not received an ack
from S2, then S1 first broadcasts that S2 is delinquent (i.e., is
suspected to have missed one or more writes), ensures that a
quorum of machines have been informed of S2’s delinquent
status, and then finally, proceeds with its release.
≻ On an acquire. Because acquires are implemented with
ABD, when S2 acquires f lag = 1 at a later time, it must
reach a quorum of machines and thus will intersect with the
quorum that knows of S2’s delinquent status. Then, and before
completing the acquire, S2 renders its entire local store stale
(out-of-epoch), by simply incrementing its machine epoch-id.
(The epoch semantics is described in the next section.)
≻ On a relaxed access. A relaxed access to an out-of-epoch
key cannot be performed with ES (i.e. in the fast path). Instead,
the key is restored in-epoch in the slow path, through an ABD
access (i.e. a stripped-down ABD as explained in §4.3). A
key is restored by simply advancing its own key’s epoch-id to
match the machine’s epoch-id.

One final problem. After S2 transitions to the slow path,
it must notify the remote machines that it has been made
aware of its delinquent status and has transitioned to the
slow path. This is necessary to prevent the pathological case
where subsequent acquires from S2 keep discovering that S2
is delinquent, needlessly bringing it back to the slow path.
However, restoring its status as non-delinquent in remote
machines is not a trivial action, as S2 must ensure that the
status is restored atomically and after it has transitioned to
the slow path. We defer the discussion of how Kite achieves
the task for Section 4.2.1.

4.2 Kite’s fast/slow path mechanism
This section provides an in-depth description of the fast/slow
path mechanism.

Release. Before a release can execute, it attempts to gather

Machine B

Machine A

Machine C

R
D
M
A

Machine B

Machine
epoch-id 1

Delinquency
bit-vector 0

A
0
B

0
C KVS

Kite

K: epoch = 1

L: epoch = 0

Figure 2. Zooming inside Machine B. Key L is out-of-epoch
(slow-path); key K is in-epoch (fast-path).

acks (from all machines) for each prior write in session order.
≻ Fast-path release. If all prior writes have been acked by
all machines, the release simply executes.
≻ Slow-path release. If any preceding write has not been
acked by all machines within a time-out, then each machine
that has not acked one or more of the writes is deemed delin-
quent; we refer to the set of delinquent machines detected
upon a release as DM-set. Before the release begins executing
it enforces two invariants: (1) all previous writes have been
acked by at least a quorum of machines and (2) the DM-set
is known to at least a quorum of machines. To satisfy (2), a
slow-release message is broadcast, containing the DM-set.
The release begins executing only after a quorum of machines
have acked the slow-release message.

Acquire. On an acquire, a machine learns whether it has
been deemed delinquent by querying a quorum of machines
(piggybacking on top of ABD read protocol actions).
≻ Fast-path acquire. If no remote machine deems the ac-
quirer delinquent, the acquire barrier is enforced by simply
blocking the session until the acquire has completed.
≻ Slow-path acquire. If the machine discovers it has been
deemed delinquent, it performs the following actions: (1) blocks
the session until the acquire completes and (2) transitions to
the slow path by incrementing its machine epoch-id, rendering
all locally stored keys out-of-epoch.

Epochs. As shown in Figure 2, each machine holds one
epoch-id. (Epoch-ids of different machines are not interre-
lated.) Additionally, each key stores a per-key epoch-id as
part of its metadata. Both per-key and machine epoch-ids
are initially set to 0 and are monotonically increasing. On
each relaxed access, the per-key epoch-id is compared against
the machine epoch-id. If the key’s epoch-id matches the ma-
chine’s epoch-id, the key is in-epoch and can be accessed in
the fast-path (i.e. with ES). Otherwise, if the machine epoch-
id is greater, the key is said to be out-of-epoch, where it can
only be accessed in the slow path (i.e. with ABD).

Returning to fast path. The transition to the fast path hap-
pens at a per-key granularity. Upon accessing an out-of-epoch
key (in the slow path), the key’s epoch-id is advanced to the
machine’s epoch-id, bringing the key back in-epoch. As an
example, Figure 2 depicts the state of Kite machine B. B’s

A B C
0 0 0

slow-release from C
"B has lost a write"

 a
cq

ui
re

fro
m

 B

 reset-bit

from
 B

A B C
0 1 0

A B C
0 T 0

1

23

Figure 3. The transitions of the delinquency bit-vector of
machine A, in a configuration with 3 machines: A, B, and C.
machine epoch-id is 1, which means it has been delinquent
in the past. B has two locally stored keys: L, which is out-
of-epoch and thus accessible only in the slow-path, and K,
which is in-epoch and thus has been accessed in the slow path
once, after B transitioned to the slow path. Note that if the
machine epoch-id is incremented while a slow-path access is
executing, then, when the slow-path access completes, the key
must not be restored back in-epoch. For this reason, the key’s
epoch-id is advanced to what the machine epoch-id was when
the access started, rather than to the value of the machine
epoch-id when the access completes.

Enforcing the Barrier Invariant. Before executing a release
one of the following must have happened: 1) all previous
writes have been acked by all; or 2) all previous writes have
been acked by a quorum, and a quorum of machines have seen
the DM-set. Therefore, an acquire that reads from a release,
either is guaranteed to have seen all preceding writes or is
guaranteed to find out about being delinquent and perform
subsequent relaxed accesses in the slow path. We prove this
rigorously in the Section 5.

RMWs. The discussion naturally extends to RMWs: release
barrier semantics are implemented identically to regular re-
leases and acquire barrier semantics are implemented identi-
cally to acquires.

Time-out and Availability. Recall that before a release ex-
ecutes, it attempts to gather all acks for prior writes within
a time-out; if unsuccessful, it executes the slow path barrier.
We note that increasing the length of the time-out can affect
availability, but decreasing the time-out can only affect per-
formance, as it will only mean machines go to the slow path
more often. Therefore the time-out length offers a trade-off
between availability and performance, and should be tuned
with respect to the system requirements and the system envi-
ronment. We revisit the time-out’s effect in Section 8.4.

4.2.1 Setting and resetting delinquency
In a Kite deployment, each machine maintains a delinquency
bit-vector with a delinquency bit for each remote machine.
The delinquency bit denotes whether a given remote machine
has been deemed delinquent and is used to notify that machine
when it performs an acquire.
Setting a bit. Delinquency bits get set upon receiving a slow-
release message. Figure 3 illustrates the transitions of A’s
bit-vector in a deployment with machines A, B and C. Firstly,
A sets the bit for B in its bit-vector, when it receives a slow-
release message from C, denoting that B is delinquent.

Resetting a bit. Eventually, when B executes an acquire, it
reaches A, finding out that it must transition to the slow-path.
At this point, A must reset its bit for B, so that subsequent
acquires from B will not revert B to the slow path again.
However, receiving an acquire from B is not enough for A to
reset the bit; rather, A must know that B has transitioned to the
slow path. To resolve this issue, when an acquirer discovers
its delinquency, it broadcasts a reset-bit message only after it
has transitioned to the slow path.

Atomic reset. Given that resetting a delinquency bit is a two-
step process (acquire and reset-bit), we must ensure the bit
is atomically read and reset, without any intervening slow-
release messages. We ensure atomicity as follows. Each ac-
quire is tagged with a unique id, which is included in the
generated reset-bit message. Upon receiving the acquire from
B, A transitions its bit to a transient state T and notes the
unique id of the acquire. Upon receiving a slow-release mes-
sage that marks B as delinquent, A unconditionally sets B’s
bit to 1. Upon receiving a reset-bit message, A transitions the
bit back to 0, iff the bit is still in T state and the reset-bit
originates from the acquire that transitioned the bit to T .

4.3 Optimizations

Having established how Kite enforces RC, we now describe
two non-intrusive, protocol-level optimizations.

Overlapping a release with waiting. The first broadcast
round of a release (i.e., ABD write) reads the LLCs from
a quorum of machines for the key to be written, to ensure
that the releaser uses a sufficiently big LLC. Because reading
remote LLCs is a benign action that does not notify remote
machines of the ensuing release, we perform it early, overlap-
ping its latency with waiting for acks of prior writes. Extend-
ing to the RMWs, we overlap waiting for acks with the Paxos
first phase (i.e., proposing), which, similarly to the first round
an ABD write, does not contain the new value to be written.

Slow-path optimization. We earlier specified that the slow
path of relaxed reads and writes is implemented with ABD.
However, ABD provides more guarantees than required in
this instance, as it is fully linearizable, whereas we only seek
to enforce RC. Specifically, the slow-path must ensure that a
relaxed read observes any completed relaxed write that may
have been missed, and as such, it is sufficient to read from a
quorum of machines, guaranteeing an intersection with writes.
Therefore, the optional second round broadcast of ABD reads
is not required in this instance, as relaxed reads need not make
sure that the read value has been seen by a quorum. In the
same spirit, we complete writes without waiting for acks, as
relaxed writes need not ensure that the write has been seen
by a quorum; rather the subsequent release in session order is
responsible for that.

5 Proof: Kite’s fast/slow path enforces RC

In this section, we prove informally that Kite’s fast/slow

path mechanism enforces RC. We first specify RC (§5.1)
and provide a high-level sketch of the proof (§5.2). Then,
we identify the different cases of Kite’s operation, proving
correctness on a case-by-case basis. Specifically, we focus
on three cases: Kite’s fast-path (§5.3), the transition from
fast-path to slow-path (§5.4) and finally the transition from
slow-path to fast-path (§5.5).

5.1 Release Consistency Semantics
We use the following notation for memory events:
• Mi

x: memory operation (any type) to key x from session i.
The operation can be further specified as a read: Ri

x, a write
W i

x or with an identifier (e.g. M1i
x)

• Relix: a release (release write or release-RMW) to key x
from session i.

• Acqi
x: an acquire (acquire read or acquire-RMW) to key x

from session i.

Note that our RMW reads have acquire semantics and RMW
writes have release semantics automatically. We use the fol-
lowing notation for ordering memory events:
• Mi

x
so−→ Mi

y : Mi
x precedes Mi

y in session order.

• Mi
x

hb−→ Mj
y : Mi

x precedes Mj
y in the global history of mem-

ory events, which we refer to as happens-before order (hb−→).

We formalize Release Consistency using the following rules:

i) A memory access that precedes a release in session
order appears before the release in happens-before:
Mi

x
so−→ Reli

y ⇒ Mi
x

hb−→ Reli
y.

ii) A memory access that follows an acquire in session or-
der appears after the acquire in happens-before: Acqi

y
so−→

Mi
x ⇒ Acqi

y
hb−→ Mi

x.
iii) An acquire that follows a release in session order ap-

pears after the release in happens-before: Reli
y

so−→ Acqi
x

⇒ Reli
y

hb−→ Acqi
x.

iv) Two memory accesses to the same key ordered in ses-
sion order preserve their ordering in happens-before:
M1i

x
so−→ M2i

x ⇒ M1i
x

hb−→ M2i
x.

v) RMW-atomicity axiom: an RMW appears to executes
atomically, i.e., for an RMW that is composed of a read
Ri

x and a write W i
x , there can be no write W j

x such that
Ri

x
hb−→W j

x
hb−→W i

x .
vi) Load value axiom: A read to a key always reads the lat-

est write to that key before the read in happens-before:
if W j

x
hb−→ Ri

x (and there is no other intervening write W k
x

such that W j
x

hb−→W k
x

hb−→ Ri
x), the read Ri

x reads the value
written by the write W j

x .

5.2 Proof Sketch
The key result that needs to be proved is that Kite enforces
the load value axiom: a read must return the value written by
the most recent write before it in happens-before. Below, we
provide a sketch of a proof, identifying the non-trivial cases

time

Initially X = 0, f1= 0, f2 = 0

Session i

T0

T1

Tn

Tn+1

Wx(1)

Relf1(1)

Session j

RX(0)

Acq (1)

hb

i

i

j
f2

j

Figure 4. Proof sketch assumed violation. The RC violation
is that Session A reads X = init, instead of X = 1.

that need to be proved more rigorously, along the way.
One degenerate case is when both the write and the read are

from the same session. In this case, the load value axiom is
enforced since Kite honors dependencies within each session.
More specifically, in the fast path, the write would have been
applied to the KVS before the read performs. In the slow path,
every read explicitly checks for dependencies with previous
writes in progress.

Therefore, the interesting case is when the write and read
are from two different sessions: specifically W i

x (from session-
i) and R j

x (from session-j). Without loss of generality we
assume that W i

x and R j
x are relaxed operations. The fact that

the write appears before the read in happens-before implies
that there must be a release after the write in session-i and an
acquire before the read in session-j, such that the release is
ordered before the acquire in happens-before. As shown in
Figure 4, given that W i

x
so−→ Reli

f1
hb−→ Acq j

f2
so−→ R j

x, we need to

prove that R j
x returns the value written by W i

x (i.e. X = 1), and
not the previous value of X (i.e. X = 0).

We first prove the following lemma and then proceed to
our proof by examining the different cases. For simplicity,
for the rest of the section, we omit the thread identifiers from
the memory operations of Figure 4, referring to them as Wx,
Rel f1 , Acq f2 and Rx.

Lemma 5.1. Acq f2 cannot complete its execution (in real
time) before Rel f1 begins execution.

Proof. Rel f1
hb−→ Acq f2 implies that Acq f2 (in the general case)

is at the end of a happens-before chain of releases and acquires
and Rel f1 is at the top of this chain. Because releases and ac-
quires are linearizable in Kite (owing to ABD), Acq f2 cannot
complete its execution before Rel f1 begins execution. □

5.3 Case 1: Fast-path (no failures or delay)
Let us assume that both session-i and session-j are operating
in fast-path. (I.e., the machines in which the sessions are
mapped are operating in the fast-path.) Kite ensures the load
value axiom via the following real-time orderings:
• Before executing a release, Kite waits for all prior writes to

be acked by all. This means that Wx is acked by session-j
before Rel f1 begins.

• Acq f2 cannot complete its execution (in real time) before
Rel f1 begins execution (from Lemma 5.1).

• Kite blocks the acquiring session until the acquire com-
pletes. This means that Rx begins execution only after the
acquire Acq f2 completes.
The above real-time orderings imply that Rx begins execu-

tion only after Wx has been acked by session-j, and hence will
read the correct value.

5.4 Case 2: Fast-path/Slow-path transition (failure or
delay)

Both sessions are initially operating in the fast-path, but
session-j fails to receive the write, Wx, owing to a failure
(e.g., a message delay). In this case, the read Rx must still
return the value written by the write, and thus cannot execute
locally in the fast-path.

To this end, we must ensure the following. First, session-i
should detect that session-j is delinquent (i.e., suspected to
have missed a write) and must broadcast this information.
Second, when session-j performs its acquire, it must discover
it has been deemed delinquent and must transition into the
slow path. Finally, when session-j transitions to the slow-path,
its read to X must read session-i’s write to X . From the above
we can infer the following three lemmas that must be enforced
in Kite for the load value axiom to hold.

Lemma 5.2. Before executing a release, the set of delinquent
machines (DM-set) must be identified and, if not empty, broad-
cast to a quorum.

Proof. This is enforced by Kite’s actions for a release. Kite
attempts to wait for all writes that precede a release to gather
acks from all replicas before executing a release. If not all
acks can be gathered, the DM-set will be broadcast and the
release will not begin executing until the DM-set broadcast is
acked by a quorum of machines. □

Lemma 5.3. For a release Rel f1 and an acquire Acq f2 , with
i , j, and Rel f1

hb−→ Acq f2 , and if Rel f1 happens to publish
delinquent machines before its execution, then Acq f2 should
be able to read the set of delinquent machines published.

Proof. A release writes a new value to a quorum of replicas.
Before any replica is updated with the released value, the
DM-set would have already reached a quorum of replicas. It
follows that if the released value can be seen, the DM-set has
reached a quorum of replicas. This is the release invariant.
Case a: the release synchronizes with the acquire. I.e., the
acquire Acq f2 reads the value of release Rel f1 . (This is only
possible if f1 = f2 = f). Following ABD, an acquire gathers
responses from a quorum of replicas, and reads the the value
with the highest LLC. If it cannot ensure that the read value
has been seen by a quorum, it broadcasts a write with the
value. There are two cases: 1) if Acq f reads the value of
Rel f from a quorum of replicas, the quorum of replicas that
replied with the new value must intersect with the quorum
that has seen the DM-set (because of the release invariant),
and therefore Acq f is guaranteed to see the DM-set in the
intersection replica. 2) if Acq f reads the value of Rel f from

fewer than a quorum of machines, then Acq f will include a
second broadcast round to write the value. In that case, it is
guaranteed that the second broadcast round of Acq f will begin
only after the value of Rel f has been written to at least one
replica (which can only happen after the DM-set has reached
a quorum, i.e. release invariant), and thus the quorum of
replicas reached by the second round of Acq f must intersect
with the quorum of machines that have seen the DM-set.
Case b: the release does not synchronize with the acquire.
I.e., Acq f2 does not read from Rel f1 . However, Rel f1

hb−→ Acq f2
implies that Acq f2 is at the end of a synchronization chain
of releases and acquires and Rel f1 is at the top of that chain;
that chain must include a release/acquire that saw the value
written by Rel f1 , and only after it had seen that value (and
thus after the DM-set has reached a quorum of replicas), it
created a new value f2 that was read by Acq f2 . Therefore, it
follows that by the time the value f2 can be read, the DM-set
has already reached a quorum of replicas. The rest of the
proof then follows the same structure as when the acquire
reads from the release (i.e., case a). □

Lemma 5.4. If an Acq f2 of session-j discovers itself to be
delinquent, then the next relaxed access to key X will happen
in the slow path.

Proof. A key X is accessed in the fast-path, iff the epoch-id
of key X is equal to the machine’s epoch-id. If X’s epoch-
id is smaller than the machine’s epoch-id then X can only
be accessed in the slow-path. Accessing X in the slow-path
will advance X’s epoch to what the machine’s epoch-id was,
when the slow-path access to X was initiated. Therefore, X’s
epoch-id can never be bigger than the machine’s epoch-id, as
the machine’s epoch-id is monotonically incremented, and
X’s epoch-id only gets modified to match a snapshot of the
machine’s epoch-id.

Now assume that an acquire Acq f2 discovers it has been
deemed delinquent and thus it increments the machine’s
epoch-id (transitioning to the slow path) before completing
the acquire at time T1. It follows that at time T1, the machine’s
epoch-id is bigger than X’s epoch-id, because X’s epoch-id
can only be advanced to the newly incremented epoch-id, if
it is accessed in the slow-path after time T1. Therefore, if
session-j issues a relaxed access to X after Acq f2 , then it must
be that X’s epoch-id is smaller than the machine’s epoch-id,
and thus X will be accessed in the slow path. □

Having proved the lemmas above, we are now in a position
to prove the load-value axiom.

Lemma 5.5. For a write Wx, release Rel f1 , acquire Acq f2
and a read Rx such that: Wx

so−→ Rel f1
hb−→ Acq f2

so−→ Rx, and if
there is no intervening write to X between Wx and Rx, Rx will
read the value written by Wx.

Proof. First, we observe that Acq f2 cannot complete execu-
tion before Rel f1 begins execution. (from Lemma 5.1). Then,
we observe that since Wx

so−→ Rel f1 , it implies that at least a
quorum of acks for Wx must have been gathered before Rel f1

begins execution. In a similar vein, since Acq f2
so−→ Rx, Kite

ensures that Rx does not begin execution until after Acq f2
has completed. Therefore, Kite must have gathered at least a
quorum of acks for Wx, before Rx begins execution. Therefore,
this means that: if Rx executes in the slow path it is guaranteed
to read the value of Wx.

If Rx executes in the fast path, then it must be that Wx
gathered an ack from the machine that Rx executes from.
On the other hand, if Wx could not gather an ack from the
machine that Rx executes from, then from Lemmas 5.2, 5.3,
5.4, it follows that Rel f1 will have detected the DM-set and
Acq f2 will have discovered its delinquency transitioning into
the slow-path and thus the Rx would happen in the slow path
and would be hence guaranteed to read the value of Wx. □

5.5 Case 3: Slow-path/Fast-path transition
Once a session goes into the slow-path and reads a key using
ABD, Kite allows subsequent relaxed accesses to that key
to execute in the fast-path. This is safe since RC requires
only that new values must be seen upon an acquire. As we
already saw in case 2, upon encountering an acquire, the
acquiring session is guaranteed to learn about its delinquency
and increment its machine epoch-id, rendering all locally
stored keys out-of-epoch and thus guaranteeing that the next
access to every key will happen in the slow path.

When an acquire discovers its delinquency, it attempts
to reset the delinquency bits in remote machines, so that
subsequent acquires need not be notified again for the same
missed messages. Thus, resetting delinquency bits is a best-
effort approach to prevent repeated redundant transitions to
the slow path. To ensure correctness, we must guarantee that
the acquirer never resets a bit in a manner that can cause a
consistency violation. We identify two invariants necessary
for safety and prove that they are enforced.

First, a delinquency bit for a machine can be reset only
after the machine has transitioned into the slow path, i.e., only
after its epoch-id has been incremented. Otherwise, another
racing acquire from the same machine (but different session)
could find the bit reset and go on to erroneously access a local
key in the fast-path. Second, a delinquency bit must be reset
atomically by the acquire, i.e., between the time when the
session performs the acquire and resets the bit, the machine
must not have lost a new message. From the above, we infer
the following two lemmas that must be enforced by Kite.

Lemma 5.6. A delinquency bit for a machine is reset only
after the epoch-id of the machine has been incremented.

Proof. This is enforced by Kite’s actions. When an acquire
discovers that the machine is delinquent, it broadcasts a reset-
bit message only after incrementing its machine epoch-id. □

Lemma 5.7. A delinquency bit that was observed by acquire
Acqx will be reset iff there has been no attempt to set the bit
(by a racing slow-release) in between receiving Acqx and its
spawned reset-bit message.

Proof. Recall from § 4.2.1, that an acquire, upon detecting

a set delinquency bit, it transitions it to state T and tags it
with its unique-id. Additionally, reset-bit messages carry the
unique ids of their parents. When a reset-bit message is re-
ceived, it resets the delinquency bit iff the bit is in state T and
the carried unique-id matches that of the bit. On resetting a
bit, all written unique ids are cleared. Finally, when receiv-
ing a slow-release message, the relevant delinquency bits are
unconditionally set to 1. Therefore, any subsequent reset-bit
message will be disregarded. □

Remark. A delinquency bit can be detected by multiple ac-
quires as each machine can run many concurrent sessions,
but each session can only have one outstanding acquire at
any given moment, as acquires block the session. Therefore,
the number of unique-ids that may need to be stored with
each delinquency bit is bounded by the number of sessions
that can run on a Kite machine.

Remark. The transient state T is not essential, as the clear-
ing of all unique ids of a bit on receiving a slow-release
would have the same effect. Rather, state T is used for conve-
nience, as it simplifies the actions of resetting and setting a
delinquency bit.

6 System Design
In this section, we provide a brief overview of Kite’s im-
plementation. Firstly, we provide a functional overview of
Kite along with its API (§6.1) and then we provide details on
Kite’s KVS (§6.2) and its networking (§6.3). The source code
of Kite is available in: https://github.com/icsa-caps/Kite.

6.1 Functional Overview and API
A Kite node is composed of client and worker threads. Client
threads use the Kite API to issue requests to worker threads,
which execute all of the Kite actions to complete the requests.
Client Threads. The client threads can be used in two ways:
1) clients of Kite can be collocated with Kite, in which case
the client threads implement the client logic and 2) clients
can issue requests remotely, in which case client threads act
as a mediator, propagating the requests to the worker threads.
For the rest of the paper we assume that clients are collocated
with Kite and we simply refer to the client threads as clients.
Worker Threads. Worker threads (or simply workers), are
the backbone of Kite, as they execute the client requests by
running the three protocols, honoring the RC semantics and
maintaining the KVS. Each worker is allocated a number
of client sessions, executing only their requests. To avoid
unnecessary synchronization among workers, each session is
allocated to exactly one worker. Finally, a worker is connected
with exactly one worker in each remote machine, exchanging
the necessary protocol-level messages to execute requests.
Kite API. The Kite API offers relaxed reads/writes, release-
writes, acquire-reads, a Fetch-&-Add (FAA), and two variants
of Compare-&-Swap (CAS): a weak variant that can complete
locally if the comparison fails locally, and a strong variant
that always checks remote replicas. The Kite API includes an
asynchronous (async) and a synchronous (sync) function call

for every request (similarly to Zookeeper [34]).

6.2 Key-Value Store implementation
Every node in Kite maintains a local KVS. The implemen-
tation of the KVS is largely based on MICA [54] as found
in [40], with the addition of sequence locks (seqlocks) [45],
from [24], to enable multi-threading.
Adapting MICA for ES and ABD. The MICA read/write
API largely fits our needs for ES and ABD. Still, we make
several modifications to accommodate Kite-specific actions,
such as reading only the LLC of a key (for ABD writes) or
adding per-key epoch-ids to enable slow/fast-path transitions.
Adapting MICA for Paxos. The MICA API cannot capture
Paxos actions (e.g., . proposes/accepts). We rectify that by
adding a level of indirection: each key contains a pointer to
its own Paxos-structure. Locking the key through its seqlock
also locks the respective Paxos-structure. The Paxos-structure
stores necessary metadata to perform Paxos: e.g. highest pro-
posed LLC, highest accepted LLC etc. Therefore, a Paxos-
related request goes through MICA, locks the corresponding
key and gets directed to the key’s Paxos-structure, where it
can act on the request.

6.3 Network Communication
Kite adopts the RDMA paradigm of Remote Procedure Calls
(RPCs) over UD Sends, that has been shown to be a practical,
high-performance design [24, 39–41].
RDMA Optimizations. We carefully implement low-level,
well-established RDMA practices, such as doorbell batching
and inlining, (reader is referred to [10, 24, 40, 41] for a de-
tailed explanation). Additionally, we minimize the number of
network connections to alleviate network metadata pressure
from CPU and NIC caches and TLBs, by connecting each
worker to exactly one worker of each remote Kite machine.
Network Batching. The RPC paradigm enables batching
multiple messages in the same network packet. Kite worker
threads leverage this capability, batching messages in the
same packet opportunistically: workers never wait to fill a
quota, rather they form a packet from available messages. Op-
portunistic batching has a significant impact in performance,
as the overhead of both network and DMA transactions is
amortized (i.e., network headers, PCIe headers etc.). Addi-
tionally, batching across all protocols facilitates combining
the implementation of common functionality.
Broadcasts. Finally we note that all three protocols contain
broadcast primitives. We implement broadcasts through uni-
casts in the same manner as [24].

7 Methodology
A baseline system for Kite should be an RDMA-enabled,
replicated KVS that operates in an asynchronous environment
amidst crash-stop and network failures. In an effort to identify
existing systems that fulfill these requirements, we compare
against two systems:
1. Derecho (open-source). We identify Derecho [36] as the
most efficient amongst a series of RDMA State Machine

https://github.com/icsa-caps/Kite

Replication implementations [36, 68, 85]. We use the open-
source implementation for our evaluation.
2. ZAB (in-house). Zookeeper Atomic Broadcast (ZAB) [69]
is the replication protocol at the heart of Zookeeper [34].
We implement ZAB over a replicated KVS (same as Kite),
RDMA-enabled and multi-threaded, applying all Kite opti-
mizations. Our ZAB outperforms the open-source implemen-
tation of Zookeeper (evaluated in [37]) by three orders of
magnitude. ZAB enforces orderings by specifying a total or-
der across all writes; all nodes apply the writes in that order.
This approach allows ZAB to perform SC reads locally.
Infrastructure. We conduct our experiments on a cluster of
5 servers interconnected via a 12-port Infiniband switch (Mel-
lanox MSX6012F-BS). Each machine runs Ubuntu 18.04 and
is equipped with two 10-core CPUs (Intel Xeon E5-2630v4)
with 64 GB of system memory and a single-port 56Gb In-
finiband NIC (Mellanox MCX455A-FCAT PCIe-gen3 x16)
connected on socket 0. Each CPU has 25 MB of L3 cache
and two hardware threads per core. We disable turbo-boost,
pin threads to cores and use huge pages (2 MB).
Workloads. Similarly to prior work [34], we use KVS work-
loads with reads and writes, including releases, acquires and
RMWs, for Kite. The KVS consists of one million key-value
pairs, which are replicated in all nodes. We use keys and
values of 8 and 32 bytes, respectively which are accessed
uniformly. For Kite, requests are issued from its client threads
over the async API. As application examples, we implement
and evaluate three lock-free data structures over Kite API.

8 Evaluation
8.1 Throughput overview of the protocols
Figure 5 shows the performance of Kite and ZAB, while
varying the write ratio from 1% through 100%. Because Kite
is composed of three different protocols—ES, ABD, Paxos—
Kite’s performance is bounded by those. To better understand
where Kite falls within the boundary, we also compare against
each of these constituent protocols. (Derecho is omitted from
this experiment as we were unable to vary its write ratio.)
Below, we discuss each of the protocols, highlighting the
performance, in million requests per second (mreqs), at 1%
and 100% write ratios.
ES: 765 to 96 mreqs. ES provides per-key SC. Because
reads are always local in ES, ES serves as an upper bound for
Kite. Because writes in ES requires a broadcast, its throughput
drops with increasing write ratios.
ABD: 130 to 62 mreqs. ABD offers linearizable reads and
writes, but not consensus (i.e., it does not support RMWs).
ABD serves as the lower bound of Kite when all accesses are
marked as synchronizing, but none of them are RMWs.
ZAB: 172 to 16 mreqs. By totally ordering writes, ZAB
provides RMW semantics for its writes, but relaxes the con-
sistency of reads to allow for local reads. We observe that
ZAB outperforms ABD when the write ratio is below 20%.
This is not surprising: ZAB does more work on writes and
less work on reads in comparison to ABD.

Figure 5. Throughput while varying write ratio.

Figure 6. Kite vs ZAB while varying synchronization.

Paxos: 129 to 23 mreqs. Paxos provides the strongest guar-
antees: writes have identical semantics to RMWs, and reads
are linearizable (we use ABD reads for this experiment).
Therefore, it is no surprise that Paxos has strictly lower
throughput when compared to ABD. How does Paxos stack
up against ZAB? ZAB and Paxos offer RMW semantics for its
writes, while ZAB offers local reads. On that basis, it would
be reasonable to expect ZAB to strictly outperform Paxos.
However, we observe that ZAB only outperforms Paxos for
write ratios lower than 50%, suggesting that Paxos writes are
actually faster than ZAB writes. We confirm this in §8.2 and
offer a potential explanation.
Kite: 526 to 84 mreqs. With synchronization accesses pegged
at 5% (i.e. 5% of writes are releases, 5% of reads are acquires),
Kite’s performance is within 31% to 12% of ES. This suggests
that applications whose synchronization accesses constitute
about 5% (or lesser) are able to reap the benefits of strong
consistency at a performance that is close to EC.

Figure 6 illustrates how Kite’s throughput varies with syn-
chronization and RMWs. Workloads range from typical syn-
chronization of 5% to the extreme of 50% synchronization
and 50% RMWs. As an example, a 60% write ratio, 50% syn-
chronization and 50% RMWs workload implies 50% RMWs,
5% writes, 5% releases, 20% reads and 20% acquires.

Unsurprisingly, Kite’s performance degrades with increas-
ing synchronization. For example, in the synchronization-
heavy 20% releases-acquires and 5% RMWs workload, Kite
gets about 60% to 75% of its performance with a typical
5% synchronization workload. In the limit, Kite offers sim-
ilar or better performance to ZAB while offering stronger
consistency (since ZAB relaxes consistency for reads).

358
KReq/s

541
KReq/s

Figure 7. Write-only throughput.

Figure 8. Normalized throughput to ZAB-ideal. Bars are
tagged with flat throughput in million operations per second.

8.2 Write-only Throughput Study
In this section we focus on a write-only workload, which not
only allows us to compare against Derecho, but also allows
us to derive useful insights on Kite and ZAB. Figure 7 shows
the write-only throughput (mreqs) of Derecho, Kite and our
in-house ZAB. The three different types of writes of Kite cor-
respond to Paxos (RMWs), ABD (releases) and ES (writes).
We also evaluate both flavors of Derecho’s atomic broadcasts:
ordered and unordered.
Derecho. Derecho’s comparatively low performance ap-
pears to stem from its lack of multi-threading. Utilizing high-
bandwidth RDMA NICs requires multiple threads that ac-
tively send and receive messages. We believe Derecho’s de-
sign focuses on huge messages (in the order of MBs), where
fewer threads are required to achieve good utilization of the
NICs. We note that our evaluation of Derecho is on par with
recently published numbers by its authors [36].
Kite and ZAB. Kite’s writes (ES writes) enjoy the highest
throughput (96 mreqs) due to their lower consistency guaran-
tees. Kite’s releases (62 mreqs) offer lin (ABD writes), but
still offer a lower consistency guarantee than Kite’s RMWs
(Paxos) and ZAB, both of which solve consensus.
ZAB vs Paxos. Paxos writes (23 mreqs) comfortably outper-
form ZAB writes (16 mreqs). This is because our Paxos im-
plementation is better in uncovering request-level parallelism
across RMWs to different keys. Whereas ZAB constraints
parallelism by totally ordering all of the writes and applying
them in the same order in all nodes, our per-key Paxos allows
threads to execute RMWs on different keys in parallel.

8.3 Lock-free data structures

Using the Kite API, we implement three widely used lock-

free data structures: 1) the Treiber Stack (TS) [18], 2) the
Michael-Scott Queue (MSQ) [63, 64] and 3) the Harris and
Michael List (HML) [29, 62]. Below, we describe how the
data structures are implemented using TS as an example.
Implementation. We set up 5000 TSs, replicated across five
Kite nodes. In each node there are four client threads, running
200 sessions each, issuing their requests to the workers (20 per
node). Each session executes the ported TS code (from [71],
including the ABA counters) as follows: it randomly picks one
of the TSs and it performs a push and then a pop. Performing
a push and then immediately a pop to the same TS guarantees
that pops never find the stack empty and thus always incur the
complete pop overhead. When multiple sessions attempt to
modify a TS concurrently, their operations are said to conflict
and must typically be retried. In order to mitigate the conflict
overheads, we leverage the weak version of CAS, which can
fail locally, if the compare fails locally (see § 6.1).
Correctness & Failures. We check correctness of the im-
plementations as follows. Firstly, we assert that a pop can
never find the stack empty. In addition, every object stores
information about its current state in the metadata (e.g., if it is
pushed and in which stack). On popping an object, we check
the consistency of its metadata, with the pop action. In addi-
tion, we emulate failures by forcing Kite machines to sleep at
random times for random intervals and ensure that the rest of
the machines keep operating without violating correctness.
We compare Kite against two baselines:
1. ZAB-ideal. We do not yet have an API (like Kite) over
ZAB and therefore we can only estimate ZAB’ performance
on the data structures through traces of micro-benchmarks.
Because there is no way to estimate the overhead of conflicts,
we instead measure ZAB with the write ratio that corresponds
to each data structure, without conflicts. For instance, if per-
forming a TS push and a TS pop results in six reads and six
writes (i.e, 50% write ratio), assuming no conflicts, then the
upper bound of ZAB (i.e. ZAB-ideal) in mops for TS is its
throughput (in mreqs) on 50% write ratio divided by six (i.e.
the number of requests required per operation).
2. Kite-ideal. In order to measure the upper bound of Kite
(i.e. ideal scenario without conflicts), we grant each session its
own private data structure, completely eliminating conflicts.

Figure 8 shows the performance of Kite and Kite-ideal
normalized to ZAB-ideal for the three data structures. MSQ-4
is the MSQ workload, where each object has four discrete 32-
byte fields, and thus requires four writes to be created and four
reads to be read. Similarly, MSQ-32 is the workload where
each object has 32 fields. Each bar in Figure 8 is tagged with
the number of mops (million operations per second) achieved
by each system. E.g. for TS, 6 mops means 3 million pushes
and 3 million pops.
Comparison. Kite-ideal outperforms Kite because it does
not have conflicts. Kite outperforms ZAB-ideal for all work-
loads from 1.45× (HML-4) to 5.62× (TS-32). The gap be-
tween Kite and ZAB-ideal is correlated with the percentage of
synchronization access required per operation (dubbed ‘sync-

Figure 9. Failure study.
per’). For instance, when the fields per object increase (from
MSQ-4 to MSQ-32) the sync-per reduces, because reads and
writes to the object fields are relaxed.

8.4 Failure Study

In order to study the behaviour of Kite when failures occur,
we perform an experiment where a replica sleeps for 400ms.
Note that, forcing a process to sleep creates a bigger challenge
than simply killing it, as Kite must not only graciously handle
the replica being unresponsive, but also deal with its return
to normal operation, when it wakes up. Figure 9 shows the
throughput over time in milliseconds (ms) of Kite in conjunc-
tion with the individual throughput of a non-sleeping and a
sleeping (for 400ms) replica during the run. The workload
is 5% writes and 5% synchronization. We break down the
run into stable and transitioning periods. There are two transi-
tioning periods for the sleeping replica; one that begins when
its threads gradually get to sleep (∼ 20ms) and another that
begins when they start to wake up (∼ 420ms). The stable
periods are the three periods where the system throughput is
steady, the pre-sleep (0-20ms), the intermediate (60-420ms)
and the post-sleep (after 460ms) periods.

As expected in the pre-sleep and post-sleep periods Kite’s
performance is the same: 68 mreqs per machine, with a total
of 342 mreqs for all 5 machines. In the intermediate stable
period, we see that although the overall performance of Kite
(315 mreqs) slightly drops compared to the other steady states,
the throughput per (operational) node increases (78.8 mreqs)
since the operational replicas are able to utilize the network
resources that the sleeping replica released.

Moreover, we observe that Kite always remains available
and that its transitioning periods are very small, in the range
of tens of milliseconds. We also note that, although the second
transitioning period involves the slow-path, it is very short
since each key need only be accessed once in the slow path.
Time-out and Availability. As described in Section 4.2,
when the replica sleeps, the rest of the replicas block for
the duration of a time-out, waiting for the sleeping replica
to ack their writes. That effect is visible on the non-sleeping
replica’s throughput in Figure 9. We implement the time-out
with a software counter, and overprovision it (∼ 1ms), such
that it never gets triggered while in common operation. We
note that the time-out can be arbitrarily small, but it should
generally be set with respect to the system’s environment.

9 Related Work
Synchronous Protocols and Systems. We refer to a system
as synchronous if it assumes that failures are reliably de-
tected. Well-known synchronous protocols include Primary-
Backup [3] and Chain Replication [76, 80]. Such protocols
exploit that there is no ambiguity as to whether a long delay
is due to failure or not, as the system assumes perfect knowl-
edge of which machines are alive often via an external Perfect
Failure Detector (PFD). However, PFDs are known to be hard
to realize in practice [50]. Kite does not rely on synchrony; it
does not need an PFD.
Multiple Consistency Level Systems. There has been sub-
stantial research towards providing a multiple consistency
level (MCL) API [19, 34, 52, 72, 78, 79, 82, 87] and taming
them [5, 14, 27, 28, 32, 33, 51, 65, 73, 77]. While promising,
we argue that merely labelling accesses (or objects) with their
consistency level is not sufficient; the API should allow for
expressing the ordering relationships between the strong and
weak accesses. Taking inspiration from shared memory, we
advocate the adoption of RC for distributed KVSs.
Causal Consistency (CC). There has been substantial work
in understanding, developing and optimizing protocols to
enforce CC [2, 9, 20, 21, 55, 56, 60, 61]. CC is the degenerate
case of RC (but not RCSC), where all writes are releases and
all reads are acquires. Therefore, CC fundamentally cannot
offer better performance than RC.
Software and Hardware DSMs. RDMA has sparked a
recent resurgence in Software DSMs [16, 42, 66], follow-
ing seminal work in the nineties [17, 44, 53, 74]. Notably,
Argo [42] targets DRF programs, while TreadMarks [44],
Munin [17] and Cashmere-2L [74] all implement variants of
RC. Traditionally, DSMs have tended to focus on a simplistic
“all or nothing” failure model [75]. Fast non-volatile memory
(NVM) has renewed interest on techniques [26, 35, 38, 67,
84] that ensure the consistency of data resident in NVM upon
a crash, in order to aid recovery [23]. Whereas the above
systems focus on durability, considering a failure model in
which all processes crash together, Kite focuses on availabil-
ity, with a failure model in which individual nodes can fail in
a crash-stop manner. Integrating durability is future work.

10 Conclusion
We presented Kite, the first highly-available, replicated KVS
that offers a linearizable variant of RC in an asynchronous
environment with crash-stop and network failures. Kite incor-
porates a novel fast/slow path mechanism to enforce the RC
barrier semantics and is implemented in an RDMA-enabled
and heavily multi-threaded manner. Kite’s familiar RC API
provides a pathway for the seamless porting of fault-tolerant
shared memory algorithms—e.g., nonblocking data structures—
for distributed KVSs. Our experimental results on three widely
used lock-free data structures suggests that Kite significantly
improves upon the state-of-the-art, providing a 1.5− 5.6×
performance improvement over an in-house optimized imple-
mentation of ZAB.

References
[1] Sarita V. Adve and Mark D. Hill. 1990. Weak Ordering — a New

Definition. In Proceedings of the 17th Annual International Symposium
on Computer Architecture (ISCA ’90). ACM, New York, NY, USA,
2–14. https://doi.org/10.1145/325164.325100

[2] Sérgio Almeida, João Leitão, and Luís Rodrigues. 2013. ChainRe-
action: A Causal+ Consistent Datastore Based on Chain Replica-
tion. In Proceedings of the 8th ACM European Conference on Com-
puter Systems (EuroSys ’13). ACM, New York, NY, USA, 85–98.
https://doi.org/10.1145/2465351.2465361

[3] Peter A. Alsberg and John D. Day. 1976. A Principle for Resilient
Sharing of Distributed Resources. In Proceedings of the 2Nd In-
ternational Conference on Software Engineering (ICSE ’76). IEEE
Computer Society Press, Los Alamitos, CA, USA, 562–570. http:
//dl.acm.org/citation.cfm?id=800253.807732

[4] Ali Anwar, Yue Cheng, Hai Huang, Jingoo Han, Hyogi Sim, Dongyoon
Lee, Fred Douglis, and Ali R. Butt. 2018. bespoKV: Application
Tailored Scale-out Key-value Stores. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage,
and Analysis (SC ’18). IEEE Press, Piscataway, NJ, USA, Article 2,
16 pages. http://dl.acm.org/citation.cfm?id=3291656.3291659

[5] Masoud Saeida Ardekani and Douglas B. Terry. 2014. A Self-
configurable Geo-replicated Cloud Storage System. In Proceedings
of the 11th USENIX Conference on Operating Systems Design and
Implementation (OSDI’14). USENIX Association, Berkeley, CA, USA,
367–381. http://dl.acm.org/citation.cfm?id=2685048.2685077

[6] ARM Limited 2018. ARM Architecture Reference Manual ARMv8, for
ARMv8-A architecture profile. ARM Limited. Initial v8.4 EAC release.

[7] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. 1995. Sharing Mem-
ory Robustly in Message-passing Systems. J. ACM 42, 1 (Jan. 1995),
124–142. https://doi.org/10.1145/200836.200869

[8] Hagit Attiya, Rachid Guerraoui, Danny Hendler, Petr Kuznetsov,
Maged M. Michael, and Martin Vechev. 2011. Laws of Order: Expen-
sive Synchronization in Concurrent Algorithms Cannot Be Eliminated.
In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL ’11). ACM, New
York, NY, USA, 487–498. https://doi.org/10.1145/1926385.1926442

[9] Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2013.
Bolt-on Causal Consistency. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’13).
ACM, New York, NY, USA, 761–772. https://doi.org/10.1145/2463676.
2465279

[10] Dotan Barak. 2013. Tips and tricks to optimize your
RDMA code. https://www.rdmamojo.com/2013/06/08/
tips-and-tricks-to-optimize-your-rdma-code/. (Accessed on
07/08/2019).

[11] Luiz André Barroso, Urs Hölzle, and Parthasarathy Ranganathan. 2018.
The datacenter as a computer: Designing warehouse-scale machines.
Synthesis Lectures on Computer Architecture 13, 3 (2018), i–189.

[12] Jonathan Behrens, Ken Birman, Sagar Jha, Matthew Milano, Edward
Tremel, Eugene Bagdasaryan, Theo Gkountouvas, Weijia Song, and
Robbert Van Renesse. [n. d.]. Derecho: Group Communication at the
Speed of Light. Technical Report.

[13] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter
Dimov, Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni,
Harry Li, Mark Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song,
and Venkat Venkataramani. 2013. TAO: Facebook’s Distributed Data
Store for the Social Graph. In Proceedings of the 2013 USENIX Con-
ference on Annual Technical Conference (USENIX ATC’13). USENIX
Association, Berkeley, CA, USA, 49–60. http://dl.acm.org/citation.
cfm?id=2535461.2535468

[14] Lucas Brutschy, Dimitar Dimitrov, Peter Müller, and Martin Vechev.
2017. Serializability for Eventual Consistency: Criterion, Analysis, and
Applications. In Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages (POPL 2017). ACM, New
York, NY, USA, 458–472. https://doi.org/10.1145/3009837.3009895

[15] Sebastian Burckhardt. 2014. Principles of Eventual Consistency. Found.
Trends Program. Lang. 1, 1-2 (Oct. 2014), 1–150. https://doi.org/10.
1561/2500000011

[16] Qingchao Cai, Wentian Guo, Hao Zhang, Divyakant Agrawal, Gang
Chen, Beng Chin Ooi, Kian-Lee Tan, Yong Meng Teo, and Sheng
Wang. 2018. Efficient Distributed Memory Management with RDMA
and Caching. Proc. VLDB Endow. 11, 11 (July 2018), 1604–1617.
https://doi.org/10.14778/3236187.3236209

[17] John B. Carter. 1995. Design of the Munin Distributed Shared Memory
System. J. Parallel Distrib. Comput. 29, 2 (Sept. 1995), 219–227.
https://doi.org/10.1006/jpdc.1995.1119

[18] Thomas J. Watson IBM Research Center and R.K. Treiber. 1986. Sys-
tems Programming: Coping with Parallelism. International Busi-
ness Machines Incorporated, Thomas J. Watson Research Center.
https://books.google.co.uk/books?id=YQg3HAAACAAJ

[19] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam
Silberstein, Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel
Weaver, and Ramana Yerneni. 2008. PNUTS: Yahoo!’s hosted data
serving platform. Technical Report. IN PROC. 34TH VLDB.

[20] Jiaqing Du, Sameh Elnikety, Amitabha Roy, and Willy Zwaenepoel.
2013. Orbe: Scalable Causal Consistency Using Dependency Matrices
and Physical Clocks. In Proceedings of the 4th Annual Symposium on
Cloud Computing (SOCC ’13). ACM, New York, NY, USA, Article 11,
14 pages. https://doi.org/10.1145/2523616.2523628

[21] Jiaqing Du, Călin Iorgulescu, Amitabha Roy, and Willy Zwaenepoel.
2014. GentleRain: Cheap and Scalable Causal Consistency with Phys-
ical Clocks. In Proceedings of the ACM Symposium on Cloud Com-
puting (SOCC ’14). ACM, New York, NY, USA, Article 4, 13 pages.
https://doi.org/10.1145/2670979.2670983

[22] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. 1985.
Impossibility of Distributed Consensus with One Faulty Process. J.
ACM 32, 2 (April 1985), 374–382. https://doi.org/10.1145/3149.214121

[23] Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Petrank.
2018. A Persistent Lock-free Queue for Non-volatile Memory. In
Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP ’18). ACM, New York, NY,
USA, 28–40. https://doi.org/10.1145/3178487.3178490

[24] Vasilis Gavrielatos, Antonios Katsarakis, Arpit Joshi, Nicolai Oswald,
Boris Grot, and Vijay Nagarajan. 2018. Scale-out ccNUMA: Exploiting
Skew with Strongly Consistent Caching. In Proceedings of the Thir-
teenth EuroSys Conference (EuroSys ’18). ACM, New York, NY, USA,
Article 21, 15 pages. https://doi.org/10.1145/3190508.3190550

[25] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gib-
bons, Anoop Gupta, and John Hennessy. 1990. Memory Consistency
and Event Ordering in Scalable Shared-memory Multiprocessors. In
Proceedings of the 17th Annual International Symposium on Com-
puter Architecture (ISCA ’90). ACM, New York, NY, USA, 15–26.
https://doi.org/10.1145/325164.325102

[26] Vaibhav Gogte, Stephan Diestelhorst, William Wang, Satish
Narayanasamy, Peter M. Chen, and Thomas F. Wenisch. 2018. Per-
sistency for Synchronization-free Regions. In Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2018). ACM, New York, NY, USA, 46–61.
https://doi.org/10.1145/3192366.3192367

[27] Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh,
and Marc Shapiro. 2016. ’Cause I’m Strong Enough: Reasoning About
Consistency Choices in Distributed Systems. In Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ’16). ACM, New York, NY, USA,
371–384. https://doi.org/10.1145/2837614.2837625

[28] Rachid Guerraoui, Matej Pavlovic, and Dragos-Adrian Seredinschi.
2016. Incremental Consistency Guarantees for Replicated Objects. In
Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation (OSDI’16). USENIX Association, Berke-
ley, CA, USA, 169–184. http://dl.acm.org/citation.cfm?id=3026877.
3026891

https://doi.org/10.1145/325164.325100
https://doi.org/10.1145/2465351.2465361
http://dl.acm.org/citation.cfm?id=800253.807732
http://dl.acm.org/citation.cfm?id=800253.807732
http://dl.acm.org/citation.cfm?id=3291656.3291659
http://dl.acm.org/citation.cfm?id=2685048.2685077
https://doi.org/10.1145/200836.200869
https://doi.org/10.1145/1926385.1926442
https://doi.org/10.1145/2463676.2465279
https://doi.org/10.1145/2463676.2465279
https://www.rdmamojo.com/2013/06/08/tips-and-tricks-to-optimize-your-rdma-code/
https://www.rdmamojo.com/2013/06/08/tips-and-tricks-to-optimize-your-rdma-code/
http://dl.acm.org/citation.cfm?id=2535461.2535468
http://dl.acm.org/citation.cfm?id=2535461.2535468
https://doi.org/10.1145/3009837.3009895
https://doi.org/10.1561/2500000011
https://doi.org/10.1561/2500000011
https://doi.org/10.14778/3236187.3236209
https://doi.org/10.1006/jpdc.1995.1119
https://books.google.co.uk/books?id=YQg3HAAACAAJ
https://doi.org/10.1145/2523616.2523628
https://doi.org/10.1145/2670979.2670983
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3178487.3178490
https://doi.org/10.1145/3190508.3190550
https://doi.org/10.1145/325164.325102
https://doi.org/10.1145/3192366.3192367
https://doi.org/10.1145/2837614.2837625
http://dl.acm.org/citation.cfm?id=3026877.3026891
http://dl.acm.org/citation.cfm?id=3026877.3026891

[29] Timothy L. Harris. 2001. A Pragmatic Implementation of Non-blocking
Linked-Lists. In Proceedings of the 15th International Conference on
Distributed Computing (DISC ’01). Springer-Verlag, London, UK, UK,
300–314. http://dl.acm.org/citation.cfm?id=645958.676105

[30] Maurice Herlihy and Nir Shavit. 2008. The Art of Multiprocessor
Programming. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA.

[31] Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A
Correctness Condition for Concurrent Objects. ACM Trans. Program.
Lang. Syst. 12, 3 (July 1990), 463–492. https://doi.org/10.1145/78969.
78972

[32] Brandon Holt, James Bornholt, Irene Zhang, Dan Ports, Mark Oskin,
and Luis Ceze. 2016. Disciplined Inconsistency with Consistency Types.
In Proceedings of the Seventh ACM Symposium on Cloud Computing
(SoCC ’16). ACM, New York, NY, USA, 279–293. https://doi.org/10.
1145/2987550.2987559

[33] Brandon Holt, Irene Zhang, Dan Ports, Mark Oskin, and Luis Ceze.
2015. Claret: Using Data Types for Highly Concurrent Distributed
Transactions. In Proceedings of the First Workshop on Principles and
Practice of Consistency for Distributed Data (PaPoC ’15). ACM, New
York, NY, USA, Article 4, 4 pages. https://doi.org/10.1145/2745947.
2745951

[34] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed.
2010. ZooKeeper: Wait-free Coordination for Internet-scale Systems. In
Proceedings of the 2010 USENIX Conference on USENIX Annual Tech-
nical Conference (USENIXATC’10). USENIX Association, Berkeley,
CA, USA, 11–11. http://dl.acm.org/citation.cfm?id=1855840.1855851

[35] Joseph Izraelevitz, Hammurabi Mendes, and Michael L. Scott. 2016.
Linearizability of Persistent Memory Objects Under a Full-System-
Crash Failure Model. In Distributed Computing - 30th International
Symposium, DISC 2016, Paris, France, September 27-29, 2016. Pro-
ceedings. 313–327. https://doi.org/10.1007/978-3-662-53426-7_23

[36] Sagar Jha, Jonathan Behrens, Theo Gkountouvas, Matthew Milano,
Weijia Song, Edward Tremel, Robbert Van Renesse, Sydney Zink, and
Kenneth P. Birman. 2019. Derecho: Fast State Machine Replication
for Cloud Services. ACM Trans. Comput. Syst. 36, 2, Article 4 (April
2019), 49 pages. https://doi.org/10.1145/3302258

[37] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee,
Robert Soulé, Changhoon Kim, and Ion Stoica. 2018. NetChain:
Scale-Free Sub-RTT Coordination. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 18). USENIX
Association, Renton, WA, 35–49. https://www.usenix.org/conference/
nsdi18/presentation/jin

[38] A. Joshi, V. Nagarajan, M. Cintra, and S. Viglas. 2018. DHTM: Durable
Hardware Transactional Memory. In 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA). 452–465.
https://doi.org/10.1109/ISCA.2018.00045

[39] Anuj Kalia, Michael Kaminsky, and David Andersen. 2019. Datacen-
ter RPCs can be General and Fast. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19). USENIX
Association, Boston, MA, 1–16. https://www.usenix.org/conference/
nsdi19/presentation/kalia

[40] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. Design
Guidelines for High Performance RDMA Systems. In Proceedings of
the 2016 USENIX Conference on Usenix Annual Technical Conference
(USENIX ATC ’16). USENIX Association, Berkeley, CA, USA, 437–
450. http://dl.acm.org/citation.cfm?id=3026959.3027000

[41] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. FaSST:
Fast, Scalable and Simple Distributed Transactions with Two-sided
(RDMA) Datagram RPCs. In Proceedings of the 12th USENIX Con-
ference on Operating Systems Design and Implementation (OSDI’16).
USENIX Association, Berkeley, CA, USA, 185–201. http://dl.acm.
org/citation.cfm?id=3026877.3026892

[42] Stefanos Kaxiras, David Klaftenegger, Magnus Norgren, Alberto Ros,
and Konstantinos Sagonas. 2015. Turning Centralized Coherence and
Distributed Critical-Section Execution on Their Head: A New Ap-

proach for Scalable Distributed Shared Memory. In Proceedings of
the 24th International Symposium on High-Performance Parallel and
Distributed Computing (HPDC ’15). ACM, New York, NY, USA, 3–14.
https://doi.org/10.1145/2749246.2749250

[43] Idit Keidar and Sergio Rajsbaum. 2003. On the Cost of Fault-Tolerant
Consensus When There Are No Faults – A Tutorial. In Dependable
Computing, Rogério de Lemos, Taisy Silva Weber, and João Batista
Camargo (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 366–
368.

[44] Pete Keleher, Alan L. Cox, Sandhya Dwarkadas, and Willy Zwaenepoel.
1994. TreadMarks: Distributed Shared Memory on Standard Worksta-
tions and Operating Systems. In Proceedings of the USENIX Winter
1994 Technical Conference on USENIX Winter 1994 Technical Confer-
ence (WTEC’94). USENIX Association, Berkeley, CA, USA, 10–10.
http://dl.acm.org/citation.cfm?id=1267074.1267084

[45] Christoph Lameter. 2005. Effective synchronization on Linux/NUMA
systems. In Gelato Conference, Vol. 2005. http://www.lameter.com/
gelato2005.pdf

[46] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a
Distributed System. Commun. ACM 21, 7 (1978), 558–565.

[47] L. Lamport. 1979. How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs. IEEE Trans. Comput. C-
28, 9 (Sept 1979), 690–691. https://doi.org/10.1109/TC.1979.1675439

[48] Leslie Lamport. 1998. The part-time parliament. ACM Transactions
on Computer Systems (TOCS) 16, 2 (1998), 133–169.

[49] Leslie Lamport. 2005. Generalized consensus and Paxos.
(2005). https://www.microsoft.com/en-us/research/wp-content/
uploads/2016/02/tr-2005-33.pdf

[50] Joshua B. Leners, Hao Wu, Wei-Lun Hung, Marcos K. Aguilera, and
Michael Walfish. 2011. Detecting Failures in Distributed Systems with
the Falcon Spy Network. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles (SOSP ’11). ACM, New
York, NY, USA, 279–294. https://doi.org/10.1145/2043556.2043583

[51] Cheng Li, Joao Leitão, Allen Clement, Nuno Preguiça, Rodrigo Ro-
drigues, and Viktor Vafeiadis. 2014. Automating the Choice of
Consistency Levels in Replicated Systems. In 2014 USENIX An-
nual Technical Conference (USENIX ATC 14). USENIX Association,
Philadelphia, PA, 281–292. https://www.usenix.org/conference/atc14/
technical-sessions/presentation/li_cheng_2

[52] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno
Preguiça, and Rodrigo Rodrigues. 2012. Making Geo-replicated Sys-
tems Fast As Possible, Consistent when Necessary. In Proceedings
of the 10th USENIX Conference on Operating Systems Design and
Implementation (OSDI’12). USENIX Association, Berkeley, CA, USA,
265–278. http://dl.acm.org/citation.cfm?id=2387880.2387906

[53] Kai Li and Paul Hudak. 1989. Memory Coherence in Shared Virtual
Memory Systems. ACM Trans. Comput. Syst. 7, 4 (Nov. 1989), 321–
359. https://doi.org/10.1145/75104.75105

[54] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kamin-
sky. 2014. MICA: A Holistic Approach to Fast In-memory Key-value
Storage. In Proceedings of the 11th USENIX Conference on Networked
Systems Design and Implementation (NSDI’14). USENIX Association,
Berkeley, CA, USA, 429–444. http://dl.acm.org/citation.cfm?id=
2616448.2616488

[55] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G.
Andersen. 2011. Don’T Settle for Eventual: Scalable Causal Consis-
tency for Wide-area Storage with COPS. In Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles (SOSP ’11).
ACM, New York, NY, USA, 401–416. https://doi.org/10.1145/2043556.
2043593

[56] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G.
Andersen. 2013. Stronger Semantics for Low-latency Geo-replicated
Storage. In Proceedings of the 10th USENIX Conference on Networked
Systems Design and Implementation (nsdi’13). USENIX Association,
Berkeley, CA, USA, 313–328. http://dl.acm.org/citation.cfm?id=
2482626.2482657

http://dl.acm.org/citation.cfm?id=645958.676105
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/2987550.2987559
https://doi.org/10.1145/2987550.2987559
https://doi.org/10.1145/2745947.2745951
https://doi.org/10.1145/2745947.2745951
http://dl.acm.org/citation.cfm?id=1855840.1855851
https://doi.org/10.1007/978-3-662-53426-7_23
https://doi.org/10.1145/3302258
https://www.usenix.org/conference/nsdi18/presentation/jin
https://www.usenix.org/conference/nsdi18/presentation/jin
https://doi.org/10.1109/ISCA.2018.00045
https://www.usenix.org/conference/nsdi19/presentation/kalia
https://www.usenix.org/conference/nsdi19/presentation/kalia
http://dl.acm.org/citation.cfm?id=3026959.3027000
http://dl.acm.org/citation.cfm?id=3026877.3026892
http://dl.acm.org/citation.cfm?id=3026877.3026892
https://doi.org/10.1145/2749246.2749250
http://dl.acm.org/citation.cfm?id=1267074.1267084
http://www.lameter.com/gelato2005.pdf
http://www.lameter.com/gelato2005.pdf
https://doi.org/10.1109/TC.1979.1675439
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2005-33.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2005-33.pdf
https://doi.org/10.1145/2043556.2043583
https://www.usenix.org/conference/atc14/technical-sessions/presentation/li_cheng_2
https://www.usenix.org/conference/atc14/technical-sessions/presentation/li_cheng_2
http://dl.acm.org/citation.cfm?id=2387880.2387906
https://doi.org/10.1145/75104.75105
http://dl.acm.org/citation.cfm?id=2616448.2616488
http://dl.acm.org/citation.cfm?id=2616448.2616488
https://doi.org/10.1145/2043556.2043593
https://doi.org/10.1145/2043556.2043593
http://dl.acm.org/citation.cfm?id=2482626.2482657
http://dl.acm.org/citation.cfm?id=2482626.2482657

[57] Daniel Lustig, Sameer Sahasrabuddhe, and Olivier Giroux. 2019. A
Formal Analysis of the NVIDIA PTX Memory Consistency Model.
In Proceedings of the Twenty-Fourth International Conference on Ar-
chitectural Support for Programming Languages and Operating Sys-
tems (ASPLOS ’19). ACM, New York, NY, USA, 257–270. https:
//doi.org/10.1145/3297858.3304043

[58] Nancy A. Lynch. 1996. Distributed Algorithms. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

[59] N. A. Lynch and A. A. Shvartsman. 1997. Robust emulation of shared
memory using dynamic quorum-acknowledged broadcasts. In Pro-
ceedings of IEEE 27th International Symposium on Fault Tolerant
Computing. 272–281. https://doi.org/10.1109/FTCS.1997.614100

[60] Prince Mahajan, Lorenzo Alvisi, and Mike Dahlin. 2011. Consistency,
availability, convergence. Technical Report. Univ. of Texas at Austin.
https://www.cs.cornell.edu/lorenzo/papers/cac-tr.pdf

[61] Syed Akbar Mehdi, Cody Littley, Natacha Crooks, Lorenzo Alvisi,
Nathan Bronson, and Wyatt Lloyd. 2017. I Can’T Believe It’s Not
Causal! Scalable Causal Consistency with No Slowdown Cascades. In
Proceedings of the 14th USENIX Conference on Networked Systems
Design and Implementation (NSDI’17). USENIX Association, Berke-
ley, CA, USA, 453–468. http://dl.acm.org/citation.cfm?id=3154630.
3154668

[62] Maged M. Michael. 2002. High Performance Dynamic Lock-free Hash
Tables and List-based Sets. In Proceedings of the Fourteenth Annual
ACM Symposium on Parallel Algorithms and Architectures (SPAA ’02).
ACM, New York, NY, USA, 73–82. https://doi.org/10.1145/564870.
564881

[63] Maged M. Michael and Michael L. Scott. 1996. Simple, Fast, and
Practical Non-blocking and Blocking Concurrent Queue Algorithms.
In Proceedings of the Fifteenth Annual ACM Symposium on Principles
of Distributed Computing (PODC ’96). ACM, New York, NY, USA,
267–275. https://doi.org/10.1145/248052.248106

[64] Maged M. Michael and Michael L. Scott. 1998. Nonblocking Al-
gorithms and Preemption-Safe Locking on Multiprogrammed Shared
Memory Multiprocessors. J. Parallel Distrib. Comput. 51, 1 (May
1998), 1–26. https://doi.org/10.1006/jpdc.1998.1446

[65] Matthew Milano and Andrew C. Myers. 2018. MixT: A Language for
Mixing Consistency in Geodistributed Transactions. In Proceedings
of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2018). ACM, New York, NY, USA,
226–241. https://doi.org/10.1145/3192366.3192375

[66] Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis
Ceze, Simon Kahan, and Mark Oskin. 2015. Latency-Tolerant Software
Distributed Shared Memory. In 2015 USENIX Annual Technical Confer-
ence (USENIX ATC 15). USENIX Association, Santa Clara, CA, 291–
305. https://www.usenix.org/conference/atc15/technical-session/
presentation/nelson

[67] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. 2014. Memory
Persistency. In Proceeding of the 41st Annual International Symposium
on Computer Architecuture (ISCA ’14). IEEE Press, Piscataway, NJ,
USA, 265–276. http://dl.acm.org/citation.cfm?id=2665671.2665712

[68] Marius Poke and Torsten Hoefler. 2015. DARE: High-Performance
State Machine Replication on RDMA Networks. In Proceedings of
the 24th International Symposium on High-Performance Parallel and
Distributed Computing (HPDC ’15). ACM, New York, NY, USA, 107–
118. https://doi.org/10.1145/2749246.2749267

[69] Benjamin Reed and Flavio P. Junqueira. 2008. A Simple Totally Or-
dered Broadcast Protocol. In Proceedings of the 2Nd Workshop on
Large-Scale Distributed Systems and Middleware (LADIS ’08). ACM,
New York, NY, USA, Article 2, 6 pages. https://doi.org/10.1145/
1529974.1529978

[70] Denis Rystsov. 2018. CASPaxos: Replicated State Machines without
logs. CoRR abs/1802.07000 (2018). arXiv:1802.07000 http://arxiv.
org/abs/1802.07000

[71] Michael L. Scott. 2013. Shared-Memory Synchronization. Morgan &
Claypool Publishers.

[72] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.
2011. Conflict-free Replicated Data Types. In Proceedings of the
13th International Conference on Stabilization, Safety, and Security
of Distributed Systems (SSS’11). Springer-Verlag, Berlin, Heidelberg,
386–400. http://dl.acm.org/citation.cfm?id=2050613.2050642

[73] KC Sivaramakrishnan, Gowtham Kaki, and Suresh Jagannathan. 2015.
Declarative Programming over Eventually Consistent Data Stores. In
Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’15). ACM, New York,
NY, USA, 413–424. https://doi.org/10.1145/2737924.2737981

[74] Robert Stets, Sandhya Dwarkadas, Nikolaos Hardavellas, Galen Hunt,
Leonidas Kontothanassis, Srinivasan Parthasarathy, and Michael Scott.
1997. Cashmere-2L: Software Coherent Shared Memory on a Clustered
Remote-write Network. In Proceedings of the Sixteenth ACM Sympo-
sium on Operating Systems Principles (SOSP ’97). ACM, New York,
NY, USA, 170–183. https://doi.org/10.1145/268998.266675

[75] Chunqiang Tang, DeQing Chen, Sandhya Dwarkadas, and Michael L.
Scott. 2003. Efficient Distributed Shared State for Heterogeneous Ma-
chine Architectures. In Proceedings of the 23rd International Confer-
ence on Distributed Computing Systems (ICDCS ’03). IEEE Computer
Society, Washington, DC, USA, 560–. http://dl.acm.org/citation.cfm?
id=850929.851916

[76] Jeff Terrace and Michael J. Freedman. 2009. Object Storage on CRAQ:
High-throughput Chain Replication for Read-mostly Workloads. In
Proceedings of the 2009 Conference on USENIX Annual Technical
Conference (USENIX’09). USENIX Association, Berkeley, CA, USA,
11–11. http://dl.acm.org/citation.cfm?id=1855807.1855818

[77] Douglas B. Terry. 2013. Replicated data consistency explained through
baseball. Commun. ACM 56 (2013), 82–89.

[78] Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh
Balakrishnan, Marcos K. Aguilera, and Hussam Abu-Libdeh. 2013.
Consistency-based Service Level Agreements for Cloud Storage. In
Proceedings of the Twenty-Fourth ACM Symposium on Operating Sys-
tems Principles (SOSP ’13). ACM, New York, NY, USA, 309–324.
https://doi.org/10.1145/2517349.2522731

[79] Robbert Van Renesse, Kenneth P. Birman, Bradford B. Glade, Katie
Guo, Mark Hayden, Takako Hickey, Dalia Malki, Alex Vaysburd, and
Werner Vogels. 1995. Horus: A Flexible Group Communications Sys-
tem. Technical Report. Ithaca, NY, USA.

[80] Robbert van Renesse and Fred B. Schneider. 2004. Chain Replication
for Supporting High Throughput and Availability. In Proceedings of
the 6th Conference on Symposium on Opearting Systems Design &
Implementation - Volume 6 (OSDI’04). USENIX Association, Berkeley,
CA, USA, 7–7. http://dl.acm.org/citation.cfm?id=1251254.1251261

[81] Paolo Viotti and Marko Vukolić. 2016. Consistency in Non-
Transactional Distributed Storage Systems. ACM Comput. Surv. 49, 1,
Article 19 (June 2016), 34 pages. https://doi.org/10.1145/2926965

[82] Werner Vogels. [n. d.]. Choosing Consistency, All Things
Distributed. https://www.allthingsdistributed.com/2010/02/strong_
consistency_simpledb.html. (Accessed on 11/04/2019).

[83] Werner Vogels. 2009. Eventually Consistent. Commun. ACM 52, 1
(Jan. 2009), 40–44. https://doi.org/10.1145/1435417.1435432

[84] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011.
Mnemosyne: Lightweight Persistent Memory. In Proceedings of the Six-
teenth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS XVI). ACM, New
York, NY, USA, 91–104. https://doi.org/10.1145/1950365.1950379

[85] Cheng Wang, Jianyu Jiang, Xusheng Chen, Ning Yi, and Heming Cui.
2017. APUS: Fast and Scalable Paxos on RDMA. In Proceedings of
the 2017 Symposium on Cloud Computing (SoCC ’17). ACM, New
York, NY, USA, 94–107. https://doi.org/10.1145/3127479.3128609

[86] Andrew Waterman, Yunsup Lee, David A. Patterson, Krste Asanovic,
Volume I User level Isa, Andrew Waterman, Yunsup Lee, and David
Patterson. 2014. The RISC-V Instruction Set Manual.

[87] Alex Yarmula. 2016. Strong consistency in Manhattan. https://bit.ly/
36rRVLj. (Accessed on 10/12/2019).

https://doi.org/10.1145/3297858.3304043
https://doi.org/10.1145/3297858.3304043
https://doi.org/10.1109/FTCS.1997.614100
https://www.cs.cornell.edu/lorenzo/papers/cac-tr.pdf
http://dl.acm.org/citation.cfm?id=3154630.3154668
http://dl.acm.org/citation.cfm?id=3154630.3154668
https://doi.org/10.1145/564870.564881
https://doi.org/10.1145/564870.564881
https://doi.org/10.1145/248052.248106
https://doi.org/10.1006/jpdc.1998.1446
https://doi.org/10.1145/3192366.3192375
https://www.usenix.org/conference/atc15/technical-session/presentation/nelson
https://www.usenix.org/conference/atc15/technical-session/presentation/nelson
http://dl.acm.org/citation.cfm?id=2665671.2665712
https://doi.org/10.1145/2749246.2749267
https://doi.org/10.1145/1529974.1529978
https://doi.org/10.1145/1529974.1529978
http://arxiv.org/abs/1802.07000
http://arxiv.org/abs/1802.07000
http://arxiv.org/abs/1802.07000
http://dl.acm.org/citation.cfm?id=2050613.2050642
https://doi.org/10.1145/2737924.2737981
https://doi.org/10.1145/268998.266675
http://dl.acm.org/citation.cfm?id=850929.851916
http://dl.acm.org/citation.cfm?id=850929.851916
http://dl.acm.org/citation.cfm?id=1855807.1855818
https://doi.org/10.1145/2517349.2522731
http://dl.acm.org/citation.cfm?id=1251254.1251261
https://doi.org/10.1145/2926965
https://www.allthingsdistributed.com/2010/02/strong_consistency_simpledb.html
https://www.allthingsdistributed.com/2010/02/strong_consistency_simpledb.html
https://doi.org/10.1145/1435417.1435432
https://doi.org/10.1145/1950365.1950379
https://doi.org/10.1145/3127479.3128609
https://bit.ly/36rRVLj
https://bit.ly/36rRVLj

	Abstract
	1 Introduction
	1.1 A Case for Release Consistency
	1.2 Kite

	2 Preliminaries
	2.1 Kite: A Replicated, Available KVS
	2.2 Consistency Models
	2.3 Release Consistency

	3 Setting the Stage: Kite Mappings
	3.1 Lamport Logical Clock (LLCs)
	3.2 Eventual Store for relaxed reads and writes
	3.3 ABD for releases and acquires
	3.4 Paxos for RMWs

	4 Enforcing RC Barrier Semantics
	4.1 Big picture
	4.2 Kite's fast/slow path mechanism
	4.3 Optimizations

	5 Proof: Kite's fast/slow path enforces RC
	5.1 Release Consistency Semantics
	5.2 Proof Sketch
	5.3 Case 1: Fast-path (no failures or delay)
	5.4 Case 2: Fast-path/Slow-path transition (failure or delay)
	5.5 Case 3: Slow-path/Fast-path transition

	6 System Design
	6.1 Functional Overview and API
	6.2 Key-Value Store implementation
	6.3 Network Communication

	7 Methodology
	8 Evaluation
	8.1 Throughput overview of the protocols
	8.2 Write-only Throughput Study
	8.3 Lock-free data structures
	8.4 Failure Study

	9 Related Work
	10 Conclusion
	References

