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ABSTRACT
This paper presents an in-memory, RDMA-enabled, highly-available,
transactional Key-Value Store (KVS), dubbed Dandelion, focusing
on significantly improving performance in small deployments (e.g.,
5 machines). The focus on small deployments is motivated by the
anticipated memory expansion (e.g. through CXL), which enables
the deployment of in-memory KVSes with few machines but lots
of memory.

A small deployment presents locality opportunities that have
not been examined by related work. Specifically, it is more likely
that at any given time, we must send multiple messages to the
same recipient. We leverage this by batching multiple requests
in the same network packet. Similarly, it is more likely that at
any given time, we have multiple requests that can be served by
the local hashtable without going through the network. Sending
all requests to the hashtable as a batch allows it to overlap their
memory latencies through software prefetching. Finally, it is more
likely that the node that requests a key, is itself a backup of that
key. We leverage this by allowing local reads from backups.

Our evaluation shows that these optimizations result in a 3.3 -
6.5x throughput improvement over a state-of-the-art system, FaSST,
in OLTP workloads in a 5-machine deployment. We characterize
the impact and scalability of each of these optimizations with up
to 10 machines – where Dandelion still offers up to 3.5× higher
throughput than FaSST.
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1 INTRODUCTION
This paper focuses on reliable distributed Key-Value Stores (KVSes).
Modern KVSes shard and replicate the data in-memory of multi-
ple servers and provide strongly consistent transactions with high
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availability. They leverage RDMA for efficient networking to de-
liver high throughput while scaling into big deployments (e.g., 90
machines). FaRM [11, 12, 33] was the first such work, which sparked
a multitude of subsequent works [7, 18, 31, 34–37, 40, 42]. Unlike
these works, we focus on small deployments (e.g., 3-10 machines).

Smaller deployments exhibit various forms of locality. For exam-
ple, it is more likely that at any given time, multiple messages from
different transactions must be sent to the same recipient. Similarly,
it is more likely that a key-value pair is stored in the machine that is
searching for it. Such locality opportunities have, for the most part,
not been exploited in the context of rdma-enabled transactional
KVSes, because of the assumption that the deployment must always
be large. Instead, related work has focused mostly on debating the
correct usage of the RDMA primitives [10, 17, 31, 35].

We focus on smaller deployments, partially in anticipation of
CXL [1] memory expansion. In its first version, CXL-1 will enable
scaling up a few servers by adding more memory at a significantly
lower cost (than buying more new servers). Further down the line, it
is expected that CXL-2 will enable the pooling of memory, entirely
removing the coupling between compute and memory. In either
case, we will no longer need a large number of servers simply to fit
the dataset in-memory.

This work tackles this challenge by exploiting the locality oppor-
tunities presented in small deployments. Specifically, we build Dan-
delion (DNL), a distributed, in-memory, highly-available, RDMA-
enabled Key-Value Store, that achieves up to 6.5x (3.5x) higher
throughput than a state-of-the-art system (FaSST [18]) with 5 (10)
machines in popular OLTP workloads. Below, we introduce each of
DNL’s main components – networking, hashtable, and protocol –
discussing the relevant locality opportunities we exploit.
Networking - § 5. The main locality opportunity that arises in
small deployments is that there is a higher probability that mul-
tiple messages must be sent to the same node at the same time.
We leverage this opportunity by batching multiple requests and
responses in the same network packet. Batching multiple messages
in the same packet amortizes the per-packet overheads incurred in
CPU (software stack needed to transmit/receive), PCIe, and network
(per-packet metadata in NIC caches, packet headers, routing, etc.).

Batching mandates the use of RPCs. RPCs can be implemented
with either two-sided or one-sided RDMA. This choice is orthogonal
to this work. As we will see in § 5, in small deployments with small
messages, batching can yield up to a 10x throughput improvement.

We use eRPC [19], which is the state-of-the-art RPC library that
encapsulates the community’s RDMA expertise. Crucially, eRPC is a
complete product in terms of features, offering support for multiple
transports (Infiniband/RoCE, DPDK, UDP), large packets and packet
re-transmission. However, eRPC does not support batching. We add
a layer on top of eRPC that batches messages to the same packet.
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While network batching is by no means a new idea, this work is
the first to highlight its importance for in-memory, RDMA-enabled,
transactional KVSes and characterize its performance benefits.
Hashtable - § 6. In DNL, each server uses a hashtable to store and
index key-value pairs. Again, locality facilitates batching, as it is
more likely that at any given time, there are multiple requests that
must be propagated to the local hashtable (e.g., , after receiving a
batch of requests through the network). Batching in the hashtable
has been shown to significantly increase throughput by overlapping
the memory latencies of the different requests [25, 30].

We design a hashtable, DLHT, which implements a batching API
along with a number of other features, such as lock-free operations
(Gets, Puts, Inserts, Deletes), special support for transactions, non-
blocking resizing, garbage collection, support for variable-size keys
and values and iterator API. We could not use an existing hashtable
because, to the best of our knowledge, no open-source hashtable
includes all these features. We provide a summary of DLHT in
section § 6, noting that we have also written a full paper on it
(under submission – anonymously accessible in https://bit.ly/dlht).
Protocol - § 4. DNL features a customizable protocol skeleton,
through which we implement three protocols. One of the protocols
is very similar to FaRM’s OCC protocol, while the other two have
not yet been explored, as far as we know. Our results show that
the three protocols provide very similar performance, even though
they have many differences. We expect that the community can
use the skeleton to explore more protocols. The protocol skeleton
leverages locality, by allowing reads of local replicas, despite of
whether the replica is a primary or a backup. This optimization has
been explored before ([21]), but not in closely related work, as it
provides limited benefit in large deployments.
Batching. Batching is the main performance driver across DNL. In
the network, we leverage locality to do batching and amortize the
costs per packet. At the hashtable, again, locality enables batching,
which allows overlapping the memory accesses of multiple requests.
On the protocol side, locality affords reading the local backup, which
is beneficial because it increases the batching opportunity for the
hashtable (shown in § 8). DNL is architected from the ground up
to support and leverage batching across the stack. We discuss this
more, along with its impact on latency in the next section.
Contribution Summary. This work anticipates that memory
expansion (i.e., through CXL) will open the road for deploying in-
memory, transactional KVSes in a small number of machines with
access to lots of memory. We build DNL, an in-memory, RDMA-
enabled, transactional KVS to leverage three locality opportunities
found in small deployments. Specifically, DNL batches in the net-
work to amortize the fixed per-packet costs, batches in the hashtable
to enable software prefetching and can read from local backups in
the protocol. Our evaluation shows that these optimizations result
in a 3.3 - 6.5x throughput improvement in OLTP workloads in a
5-machine deployment over FaSST. We characterize the impact and
scalability of each of these optimizations with up to 10 machines,
where DNL still maintains a significant throughput benefit.
Limitations. Most notably, this work is not evaluated with CXL
hardware. However, we note that due to hashtable batching, all
accesses to the index and dataset are software prefetched. For that,

Figure 1: DNL architecture

we expect that with CXL, our approach will become even more
favorable in the face of CXL’s additional latency. Similarly to related
work [11, 18, 36, 40, 42], DNL does not handle range queries. At the
moment, DNL can remain available after a server crash (discussed
in § 4.4), but does not replace the crashed node, nor re-replicates
the lost replicas. This is currently a work-in-progress. A complete
discussion of DNL recovery will merit its own paper in the near
future. Related work has done the same [7, 11, 12, 36], or does not
support recovery at all [18, 31, 42].

2 PRELIMINARIES
Architecture and assumptions. We assume a symmetric ar-
chitecture of 𝑁 machines, where each machine hosts part of the
dataset, and all machines execute transactions, communicating with
each other through a local-area network. The dataset is comprised
of key-value pairs. Each key-value pair is replicated in multiple
machines to ensure availability in the face of failures. One of the
replicas is typically denoted primary; the others are called backups.
We call the machine executing a transaction the coordinator of this
transaction.

Further, we make several assumptions, which all exist in closely
related work (i.e., FaRM[11], FaSST[18] and DrTM[35]). We assume
that client applications run on the samemachines as DNL.We target
OLTP workloads with short-lived transactions and small values
(< 100 bytes). Clients use the KVS as a library, issuing interactive
transactions; i.e., applications do not a priori know the shape of
transactions, which may vary at runtime. We focus on the strongest
consistency (strict serializability [32]), and can recover in the event
of a machine crash (§ 4.4). We do not target durability, but note that
the technique used in FaRM is applicable to DNL.
API. Transactions are issued through the multi-key API, whose
core functions are: Init(), Get(), Put(), Insert(), Delete(), Commit()
and Abort(). We also offer a single-key API for transactions that
access only a single key; the core functions are GetOne(), PutOne(),
InsertOne(), DeleteOne().
Transactional protocols. A transaction is logically split in two
phases, the execution phase in which requests are issued and the
commit phasewhich validates that reads were consistent and applies
all updates atomically. In DNL, during the execution phase, reads
are executed but all other requests are buffered. The commit phase
is configurable, offering actions such as locking, logging and read
validation.
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Dandelion: In-Memory Distributed Transactions with Few Machines

Figure 2: An overview of the DNL architecture

Servers
10 x Two-socket 18-core Intel Xeon Gold 6254
(72 h/w threads in total incl. hyper-threads)

Hardware Caches 36× 1MB L2 | 2× 24.8MB L3
System Memory 4× 32GB DDR4-2933 (128GB in total)
OS / Kernel Ubuntu 20.04.3 | Linux 5.4.0-90-generic

NICs
Mellanox ConnectX-5 100GbE
(single-port QSFP28 PCIe3x16)

Table 1: Cluster configuration

Threading model. DNL runs in the same threads as the client
code. I.e. we do not spawn any additional DNL threads. Crucially,
in each thread, DNL only communicates with one thread in each
remote machine of the cluster. The only shared data between the
threads is the hashtable. Each thread works on its own transactions,
oblivious of the existence of other threads. This model is scalable
and is also used in FaRM and FaSST. Our design description focuses
on a single thread of client code which uses the DNL API to issue
transactions.
Testbed. Table 1 describes our 10-machine cluster.
Software Stack. Figure 1 shows the DNL software stack, including
how components communicate with each other. Client code uses
the DNL API to issue transactions. The Client Side propagates the
transactional requests to the Protocol, which executes them using
the Hashtable and the Networking in the process.
Batching and Latency. Batching is a common theme across the
design of DNL. Requests are buffered by the protocol and batched
to the networking or the hashtable. Crucially, we never wait to fill a
quota. Instead, we work in each module until there is no more work
to be done. Then we move to the next module. Client code executes
until it cannot make any progress. At this point, the protocol takes
over and works until it cannot make any more progress; then, the
networking takes over. Each time a module takes over, it executes
its batches. Similarly to prior work [17, 18], we refer to this pattern
as opportunistic batching. Because we never wait to fill a quota this
has a minimal impact on latency. When the load is low the batching
is low. At higher load, we use batching to increase throughput and

thus keep latency from exploding. We corroborate this in § 8.
Deployment size with CXL. One of the purposes of the CXL
spec [1] is to loosen the tight coupling of memory and compute.
Initially, type-3 of CXL-1 will allow for memory expansion. I.e. we
will be able to plug DIMMs in PCIe slots1. Consider the example of
FaRM, which requires 90 machines for a dataset of 4.9TB (14.7TB
with 3-way replication). With 5 machines with 4TB each, we can fit
this dataset (plus the indexes and other overheads). This is possible
today without CXL, but will require very expensive large-capacity
DIMMs. (For reference, a 64GBDIMMmay cost around 200 USD and
a 128GB DIMM around 1k USD and a 256GB DIMM more than 3k
USD). Even buying the most expensive DIMMs will be a lot cheaper
than buying, maintaining, and cooling another 85 machines. With
the additional DIMM slots provided by CXL-1, we can reach the
goal of 4TB per machine, through smaller, cheaper DIMMs.

To avoid this scale-up approach, CXL-2 specifies a much more
aggressive scheme, where multiple servers can have access to a
pool of DIMMs through a CXL switch. In this case, the memory
will still be statically allocated to one server at a time. Sharing the
pooled memory is left to CXL-3.

Recent industry-led works suggest that CXL will come into the
mainstream [2, 13, 24, 27]. Adding to their arguments, we show that
emerging memory expansion can enable a range of locality-based
optimizations that significantly increase the transaction load that
each server can sustain.

In the next four sections, we go through each of the four main
modules in our software stack: Client Side, Protocol, Networking
and Hashtable using Figure 2 to demonstrate various aspects of the
design.

3 DNL CLIENT-SIDE

Applications use DNL as a library. Client code interfaces with DNL
through a construct called transaction context (TxCtx). Client code
uses the TxCtx to issue API calls, such as Init, Get, Put, Insert,
Delete, Commit, and so on. Calls are asynchronous by default. For
instance, after issuing a Get, the value will not be available after
the Get call has returned. A set of API calls allows the client to poll

1As of submission, there are no type-3 CXL-1 commercial products.
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for the completion of a specific request or all previous requests. All
API calls have a synchronous flavor.

As shown in Figure 2, a TxCtx encapsulates a transaction cache
(TxCache) and a reorder buffer (RoB). A TxCache consists of an array
of entries acting as a cleverer log of a transaction. In this array,
each entry holds a key-value pair plus some necessary metadata,
such as the type of operation (Get, Put, etc.) and the state of the
request (e.g., Success, NotYetDone, KeyNotFound, etc.). Each cache
has a compile-time configurable height (by default 16 entries) and
width (by default 128 bytes per entry); when more space is needed
in either direction, we allocate it on the spot.

The RoB is a lock-free ring buffer that maintains the order of
requests within a given transaction. Each entry in the RoB is a
pointer to a TxCache entry. Respecting the order of requests is
not required for correctness, but improves the usability of the API.
Specifically, after the client polls for the completion of a Get, using
the RoB we guarantee that all previous Gets have also completed.
This relieves the client from having to poll for every Get. It also
enables the efficient implementation of the PollAll API call. Notably,
only the Get and Commit calls allocate an RoB entry, as the rest of
the calls do not need to be propagated to the protocol explicitly.

As an example, assume the following client code that issues a
transaction to DNL.

1 TxCtx tx;
2 tx.Init();
3 tx.Get(key1 , val1);
4 tx.Get(key2 , val2);
5 coroutine_yield;
6 tx.PollAll ();
7 if (val1 == val2) {
8 tx.Put(key1 , 0);
9 }
10 auto ret = tx.Commit ();
11 coroutine_yield;
12 PollRequest(ret);

On a Get, we first probe the TxCache. If we do not find an entry
for the requested key, we allocate a new entry in the TxCacheand
another entry in the RoB. In the latter case, we then notify the
protocol of the new request (through the PassGet() function call,
discussed in the next section). The protocol buffers the request (i.e.
a pointer to the TxCache entry), but does not execute it yet. We
then do the same for the second Get. At this point, the client yields
to another coroutine. We discuss the use of coroutines immediately
after this example. Before using val1 and val2, we call PollAll(),
which returns only after all previous requests have been completed.
PollAll() calls on the protocol to run an iteration, executing all
buffered requests, including the two Gets. After executing the Gets,
the protocol copies the values for val1 and val2 in their respective
entries in the TxCache and tags them completed in the RoB. The
Gets return pointers to the TxCache entries, so no further copies
are needed. Suppose the two values are equal. The first Put request
will find that there is already a TxCache entry allocated for key1 and
will fuse its operation on it. It will change the type of the entry to
GetPut, overwrite the value in the same TxCache entry and return
to the client. Notably, the Put need not allocate a RoB entry or be
propagated to the protocol yet. Finally, the Commit allocates a RoB
entry and gets communicated to the protocol. The protocol buffers
this information and returns. When we poll for the commit, we
trigger the protocol to run an iteration, during which it will run its

commit protocol.
Parallelism within a client thread. To increase parallelism,
clients must be able to issue multiple transactions from each thread.
We facilitate this through the asynchronous API. The clients can
take advantage through the use of coroutines. Specifically, in the
above code example, before polling for the Gets, the client yields to
a different coroutine. After cycling through all of the coroutines,
the client can then poll. This allows for a bigger batch to be created
on the protocol side. Coroutines are a standard practice in related
work (e.g., FaRM, FaSST, DrTM) to increase parallelism.
Summary. DNL offers an asynchronous API. A small TxCache
holds the state of the transaction and an RoB maintains ordering so
that clients need not poll for every request explicitly. Client code
can leverage the asynchronous API to issue multiple transactions
concurrently through coroutines.

4 DNL PROTOCOL
We start our discussion with an overview that describes the actions
taken by the protocol when probed by the client-side. Then, we
dive into the specification of the protocol, describing the execution
phase and the customizable commit phase. Finally, we discuss the
locality optimization and the recovery mechanism.

4.1 Overview
The client-side module interfaces with the protocol via three func-
tions: 1) PassGet(), which is called after a Get request is issued
during execution; 2) PassCommit(), which is called after a Commit
request and 3) RunIteration() which is called when the client polls
for a request that has not yet been completed. This interface is
illustrated in Figures 1 and 2.
1. PassGet(). First, we identify the primary and backup nodes
of the requested key. If the key exists locally, either as primary
or backup, we buffer the request so that it can be batched to the
hashtable later. Otherwise, we call TryInsert() on the networking,
which inserts the Get request in a network packet. This packet will
be sent when RunIteration() is called, to facilitate batching at the
network.
2. PassComit(). A client thread can have up to a maximum of 𝑁
ongoing transactions (𝑁 is a configuration parameter). The protocol
maintains metadata for each of these transactions. On PassCommit()

we simply mark the transaction as ready to be committed and
return.
3. RunIteration(). This function takes three steps: 1) batches all
Gets that can be executed locally to the hashtable and writes back
the values to the corresponding TxCaches. 2) for each transaction
that must be committed, it makes progress until it reaches a point
where further progress requires a response from a remote node 3) it
notifies the networking layer that it should send all buffered packets
and poll for remote messages (through network.RunIteration()).

4.2 Protocol Specification
A transaction is logically split into two phases, the execution phase
in which requests are issued, and the commit phase, which is initi-
ated when the client code calls Commit(). Before we delve into the
two phases, note that the protocol requires that each key-value pair

4
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Version 29-bytes, used by the protocol to validate reads
Lock 1-bit, used by the protocol commit phase to lock objects

Readable
1-bit, used in backups to denote that a Tx holds
the protocol lock on the primary

Deleted 1-bit, used to denote whether the key has been deleted

Table 2: Key-value metadata used by the protocol(s)

Figure 3: Skeleton of the DNL commit-phase protocol. We create 3
concrete protocols by specializing this skeleton.

is accompanied by certain metadata (Table 2). The “Lock” is orthog-
onal to thread-safety. Instead it is a protocol-level lock ensuring
isolation for distributed transactions. For thread-safety, we use a
spin-lock for each key-value pair.

4.2.1 Execution Phase. During the execution phase, only Gets are
executed while the rest of the requests are buffered in the TxCaches.
To perform the Get, the protocol identifies the set of machines that
replicate the requested key. If the coordinator is one such machine,
then the Get will be executed locally; otherwise, a Get RPC is sent
to the key’s primary replica.

If the key was not found or has been marked deleted, then an
error code is reported to the client. Otherwise, the value is copied
in the corresponding TxCache entry, to be used by the client. Note
that we return the value, even if it is locked by the protocol or it is
tagged not readable. During the commit phase, we will check if the
value was legally read, and if not, we will abort the transaction.

Recall that we also offer single-key transactions. In this case,
a single-key GetOne() transaction does not have a commit phase.
For this reason, in GetOnes, we return an error code if we find
that the key is locked by the protocol, or is tagged as not-readable.
Therefore, the readable flag is needed only to support GetOnes.

4.2.2 Commit Phase. Figure 3 outlines the commit phase skeleton.
It entails 4 steps: 1) Locking, 2) Read Validation, 3) Replication and
4) Unlocking. The four steps can be customized to create differ-
ent protocols. We first describe the four steps, and then the three
protocols we implement by customizing the steps.
1. Locking. For each key in the transaction, we lock it in all of its
replicas. If the access is not a Get, we also write it in a log. Locking
will fail in two cases: 1) if the key is already locked or 2) if the
version does not match the version we read during the execution
phase. The latter is only applicable if the key was read during the

Protocol Locking
Read

Validation
Replication Unlocking

Dnl-4
P
W

Yes
B
W

P
W

Dnl-2
P

R & W
No

P & B
W

P
R & W

Dnl-1
P & B
R & W

No No
P & B
R & W

Dnl-RO No Yes No No

Table 3: Customizing the commit phase to create three different OCC
protocols committing in 4,2 and 1 rtt. Read-only transactions are
committed through Dnl-RO in all cases. (P = primary, B = backup, R=
read-set, W = write-set)

execution phase. If locking fails, we transition to the Unlocking
step with the intention to abort.
2. Read Validation. For each read in the read-set of the trans-
action, we validate that the key is unlocked and still has the same
version in its primary replica. If it is not, we transition to the Un-
locking step with the intention to abort.
3. Replication. If we have reached this step, then the transaction
can commit successfully. This step ensures that we replicate the
transaction state before reporting success to the client. For each
key in the transaction, we access all of its replicas and log the
corresponding operation. For each key in the write-set, we also
lower the Readable flag in each of its backup replicas. This ensures
the correctness of GetOne operations (as discussed in § 4.2.1).
4. Unlocking. In this step, we issue unlocks to all replicas that
were locked during the Locking step. We transition to this step,
either when we must commit or abort. The unlock messages in-
clude this information. We can notify the client about the result of
her transaction either after sending all unlock messages, or after
receiving all acks. Notifying the client early, before receiving the
acks for the unlocks saves a network round-trip time in the latency
perceived by the client, but may have repercussions on the recovery.
We discuss this in more detail in § 4.4.
Logging. We use undo logging in the backups. Hence, we apply
any updates during the Replication step and log the previous value.
This is beneficial compared to the redo logs used by FaRM because,
if the transaction has reached this step, it means it will commit
(unless a failure occurs). Using undo logging means that we need
not communicate with the backup again, since we have already
applied the update.
Raising readable flag. During the Replication step, we lower
the readable flag, denoting that the key is locked and GetOnes
should not return its value. We raise the flag, when we know that
the transaction has committed. This information is piggybacked in
messages of subsequent transactions.
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4.2.3 Customizing the Commit Phase. We customize the commit
phase by creating three protocols which we call Dnl-4, Dnl-2, and
Dnl-1. The names refer to the number of network round-trip times
(rtts) needed before we can report commit to the client. For instance,
in Dnl-1, we can report commit after 1 rtt (but need 2 rtts in aborts).

Table 3, describes how each step of the commit phase is cus-
tomized for each protocol. Specifically, the Locking step can be
customized to be performed for the write-set (W) only or to also
include the read-set (R). And it can visit only the primaries (P) or in-
clude the Backups (B). Similarly, for the Replication step. Unlocking
always mirrors the Locking step. Any step can be elided.

Dnl-4 is largely the protocol used in FaRM. It locks the primaries
of the write-set, validates reads, logs the write-set in the backups
and unlocks the primaries. Dnl-2 locks the primaries of both reads
and writes, logs the write-set in both backups and primaries, and
finally unlocks. Dnl-1 locks both reads and writes in all replicas, and
if successful, it skips to the Unlocking step. In all protocols, read-
only transactions are handled specially through Dnl-RO which
only performs read-validation. This is what happens by default in
Dnl-4.

4.3 Locality: Read from local backups
To take advantage of the small deployment, the protocol allows
Gets to read from a backup, when a backup is found locally. This
removes the overhead of sending a remote RPC to execute the Get.
In a deployment with 𝑁 machines, the probability that a Get exe-
cutes locally increases from 1/𝑁 to 𝑅/𝑁 , where 𝑅 is the replication
degree. For instance, in a deployment with 5 machines and 𝑅 = 3,
our optimization increases the chance that a Get executes locally
from 20% to 60%. But in a deployment with 50 machines, the same
percentage increases from 2% to 6%. The performance penalty for
this optimization is that we must set and reset the readable flag in
all backups, every time we lock a primary. Based on this we hypoth-
esize that the optimization will be more impactful on read-intensive
workloads and will not scale well in write-intensive workloads. We
investigate this in § 8.2.

4.4 Recovery
At the moment, DNL offers a limited form of fault tolerance. It
can recover after a server crash and continue operation, but does
not replace the crashed node nor does it re-replicate the lost data
replicas.

On a crash, all operation is halted and control transfers to the
recovery protocol. Each server examines its own coordinated trans-
actions and its logs with transactions coordinated by remote servers.
For each transaction, a decision is reached: commit or abort. Once
all decisions for all transactions are applied, recovery has completed
and operation can resume.

In each server, we maintain an epoch-id counter. When initiating
recovery we increment this counter in all live nodes. This allows
servers to disregard messages from previous epochs (messages are
tagged with an epoch-id). We must also ensure that the decision
reached for each transaction does not contradict any decision that
has already been reported to the client (abort or commit) e.g., if
the client believes its transaction is committed, we cannot abort it
during recovery. This entails a synergy between the transactional

and the recovery protocol. When the transactional protocol notifies
the client of a decision, then it must be that after any 𝑓 crashes
(with replication degree 𝑓 +1), the recovery protocol can implement
this decision.

> Correctness: For all three protocols, we have formally verified
in TLA+, that they provide strict serializability and can recover
from crashes without contradicting the decisions that have been
reported to the client.

4.5 Summary
The protocol creates batches of requests by buffering requests and
executing them all together, when probed by the client. The execu-
tion phase only issues Gets, reading local backups if they exist. The
commit phase can be customized to implement different protocols.
We implement and present three protocols. We can recover after a
crash, but do not currently handle all aspects of recovery.

5 DNL NETWORKING
5.1 Overview
As shown in Figure 1, the networking library exposes three func-
tions to the protocol: TryInsert(), TryInsertMcast() and RunIteration().
In turn, the protocolmust also implement three handlers: InsertHandler(),
ReqHandler() and RespHandler().
TryInsert(). Whenever the protocol reaches a state where it must
send a message it calls TryInsert(). The network identifies the
buffer that holds the appropriate network packet and calls the
protocol’s InsertHandler() passing it the pointer where it must
write its message. If there is no buffer available it returns false, and
the protocol must retry in the future.
TryInsertMcast(). Same as TryInsert(), but the message is writ-
ten in in multiple buffers that are later sent as unicasts to the
multicast group.
RunIteration(). This function first sends all buffered messages
and then checks if any new messages have been received. For each
received message it calles the appropriate handler, ReqHandler() or
RespHandler().
Flows. The networking library exposes the abstraction of flows.
A flow is a group of messages that can be batched together in the
same network packet. Separate handlers must be implemented and
registered for each flow. DNL uses three flows, one for the execution
phase, one for the commit phase and one for the recovery. Using
multiple flows reduces the opportunity for batching, but simplifies
the software.

5.2 eRPC
The Networking layer is implemented over the eRPC networking
library [19]. eRPC implements RPCs over UD RDMA, DPDK or UDP.
We use RDMA over Converged Ethernet (RoCE). eRPC is a feature-
complete library, supporting features such as packet retransmission
and packet fragmentation. It also makes use of commonly known
RDMAoptimizations such as doorbell batching [3, 17]. Furthermore,
its is well-documented with high-quality code, easy to use and its
many features do not hinder performance in the common case. We
performed a thorough exploration of eRPC performance and found
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four performance bugs, which we fixed. Specifically, we removed
an unnecessary header in RoCE messages, increased the RDMA
inlining limit to 188 bytes (from 60),2 spawned the buffers in the
socket that the thread is pinned rather than the socket that the NIC
is attached to, and finally, we removed the 4-byte immediate from
the header, which was not being used. We discuss the impact of
these fixes in the next section.

5.3 Batching layer
Over eRPC, we implement a layer that batches multiple messages
in a single packet. Each batch of requests, results in a batch of
responses. Batching is not a new idea. However, it is typically
not used in modern rdma-enabled OLTP KVSes despite its large
benefits in cases where small messages abound. The rest of this
section analyzes the impact of batching.

To do this, we perform an experiment where we use DNL as a
single-machine KVS and two other machines issue Get requests
for 8B keys and 16B values. The KVS holds 10 million keys, but
all requests are for the same key. This is done in order to isolate
the performance of the networking library. Figures 4-6 characterize
the effect of batching through measurements on the machine that
acts as the KVS. Specifically, Figure 4 shows the throughput of the
KVS in millions Gets per second while scaling the threads. We run
three configurations 1) DNL: is regular DNL which can batch up
to 100 read requests/responses in every network packet. 2) DNL-
no-batch: we disable batching and 3) eRPC: we also remove the
fixes for the performance bugs that we mentioned in the previous
section. Figure 5 focuses on DNL (64 threads) and shows three
statistics as we increase batching from 1 to 64: the throughput, the
send network bandwidth (Gbps) and the number of packets sent per
second. Finally, Figure 6 breaks down the send network bandwidth
into goodput and headers when increasing the batching degree
(using 64 threads).

We make the following observations. First note that our opti-
mizations on eRPC yield a throughput improvement from 20% with
1 thread to 5x with 71 threads. From this point on, we always use the
optimizations and do not discuss them again. Batching yields from
2.8x improvement up to more than 10x at 71 threads. As batching
increases we cannot sustain the same packet rate, because packets
become larger and thus more expensive to create, DMA, transfer etc.
Adding to this, when batching more than 6 responses, the payload
surpasses the inlining threshold (188 bytes) and thus the NIC must
do a second DMA per packet to fetch the payload (the first DMA
fetches the work request). This is why increasing batching from 4
to 8 is underwhelming. However, with bigger packets, we use more
of the available network bandwidth (100Gbps) because we send
fewer packets amortizing the required costs per packet, such as the
NIC DMAs to fetch the packet payload or the required per-packet
metadata that are cached in the NIC. Crucially, a lot more of that
bandwidth is spent on application data (rather than on headers).

2This is not part of the specification, even though the programmer must decide at a
per-packet basis if a packet can be inlined. To find the inlining limit, we modify the
driver, such that on initialization of DNL we can query it. We assume eRPC uses 60
Bytes as a lower bound for safety.

5.4 Locality: Network batching
In our Introduction, we hypothesized that network batching is
useful in small deployments because of locality. Simply put, it is
more likely to find two messages for the same recipient at any given
time. However, in Figure 5, we observe that even batching two
requests yields almost a 2x improvement in throughput. This hints
that batching may be useful even in the presence of lower locality
in bigger deployments. We explore this further in our Evaluation
(§8).

5.5 RDMA primitives debate
Related work has extensively debated the use of two-sided vs one-
sided RDMA. One-sided RDMA cannot execute in a gather/scatter
fashion; i.e., we can only read/write at a single memory location at
a time. This means that we need RPCs in order to do batching in the
network, as reading/writing multiple locations directly with RDMA
Reads/Writes would require multiple network packets. Therefore,
this work takes the position that in a scenario where small mes-
sages are exchanged at a high rate we must use batched RPCs; the
primitive through which we implement the RPCs, be it one-sided
or two-sided, is of secondary importance.

5.6 Summary
We identified eRPC [19] as a feature-complete, high performance
networking library for RPCs over RDMA. We fix a few performance
bugs in eRPC that yield 1.2x - 5x throughput improvement, and
implement a batching layer on top of it, which yields another 2.8x -
10x throughput improvement.

6 DNL HASHTABLE (DLHT)
We design a new hashtable called DLHT. In this section, we provide
a summary of DLHT, noting that we have also written a full paper
on it (will appear in HPDC’25 – accessible via https://bit.ly/dlht).

We design a new hashtable because fast, open-source hashta-
bles lack many important features, that are necessary to make
them usable in practice. Specifically, DLHT supports a very high-
throughput CRUD API and comes with its own garbage collector.
It can handle keys and values of any size in the same instance
and it implements a very fast resizing algorithm that only blocks
operations to a single bucket at a time. It offers significant optimiza-
tions for small values that can be inlined in the index and it can
handle non-unique keys. Most of these features are not found in
open-source hashtables [9, 25, 26, 30].

Besides sacrificing core functionality, state-of-the-art designs
still incur multiple memory accesses per request and block request
processing in three cases. First, most hashtables block while waiting
for data to be retrieved from memory. Second, open-addressing
designs, which represent the current state-of-the-art, either cannot
free index slots on deletes or must block all requests to do so. Third,
index resizes block every request until all objects are copied to the
new index.

Defying folklore wisdom, DLHT forgoes open-addressing and
adopts a fully-featured and memory-aware closed-addressing de-
sign based on bounded cache-line-chaining. This design offers 1
lock-free operations and deletes that free slots instantly, 2 com-
pletes most requests with a single memory access, 3 utilizes

7
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software prefetching to hide memory latencies, and 4 employs a
novel non-blocking and parallel resizing.
Locality. Our DLHT paper compares with eight other high-perfor-
mance hashtables (the fastest we could find). Here we focus solely
on how we can take advantage of the locality that is present in
smaller clusters. Specifically, with a small cluster, it is more likely
that at any given time, there are multiple requests that must be
propagated to the local hashtable.

Having a batch of requests allows us to overlap their memory
latencies. As shown in Figures 1 and 2, DLHT offers a batching API
(BatchReqs()), that allows clients to propagate a batch of hashtable
requests. Before executing the requests, DLHT loops through the
batch issuing a software prefetch for the hashtable location of
each request. Thus the memory accesses of the batched requests
are overlapped. This is a crucial optimization because hashtable
accesses are random by nature and thus cannot be prefetched by
the hardware. This technique has been shown by DLHT but also
prior work [25, 30] to increase throughput by more than 2x.

Figure 7, shows the throughput of DLHT for Gets that access ran-
dom keys in a 4GB index that holds 100m 8-byte keys (with 8-byte
values). Note that (unlike previous Figures) there is no network in-
volved in Figure 7; this is within a single-node. We simply measure
the number of Gets we can do to the hashtable. The measurement
is taken with 16 threads. With 24 requests, we can achieve an im-
provement of more than 3x in throughput. However, when only
few requests are available, e.g., four, the improvement is not very
big. This hints that this optimization will work best in small deploy-
ments, but may not scale as well. We corroborate this hypothesis
in our evaluation (§ 8).

7 EXPERIMENTAL METHODOLOGY
Table 1 summarizes the cluster hardware. By default, we run with
5 machines and use a replication degree of 3 in all experiments.
We use 2 MiB hugepages and we pin threads to cores. We briefly
discuss our workloads next.
Smallbank. Smallbank is a write-intensive OLTP benchmark that
simulates bank accounts. 15% of transactions read a single key.. Keys
are 8 bytes and values are 8 bytes. Each machine is the primary for
18 million keys and the backup for 36 million keys. We chose this
number, because it is the maximum number of keys we could use
in FaSST.
Tatp. Tatp is a read-intensive OLTP benchmark that simulates a
telecommunication workload. In Tatp, 70% of transactions read a
single key Keys are 8 bytes and values are 48 bytes. Each machine
is the primary for 11 million keys and backup for 22 million keys.
We chose this number, because it is the maximum number of keys
we could use in FaSST.
Microbenchmarks. Similarly to FaSST we use the notation
O(G,P) to specify a microbenchmark with G Gets and P Puts. We
run O(1,0), O(0,1), O(4,0) and O(4,2). Keys are 8 bytes and values are
16 bytes. We select keys at random. Each machine is the primary
for 18 million keys and the backup for 36 million keys (again, this
is the maximum in FaSST).
Evaluated Systems. We will evaluate the three protocols im-
plemented in DNL (Dnl-4, Dnl-2 and Dnl-1). The most relevant
systems we can compare against are FaSST [18], DrTM [35] and
FaRM [31]. They are all in-memory, RDMA-enabled transactional
systems, whose main differences are in the choice of RDMA primi-
tives. FaSST argues for 2-sided, FaRM argues for 1-sided, and DrTM
argues for a hybrid approach. FaSST and DrTM show significant
improvements over FaRM, so, we do not discuss FaRM in our eval-
uation (also FaRM is closed source). We could not get DrTM to run
in our setup. However, the infrastructure used in the DrTM evalua-
tion [35] is very similar to ours, so we compare with the numbers
from their paper. We run FaSST, observing that we measured very
similar throughput/latency as reported in their paper. Similarly,
to DNL, FaSST uses 2-sided RDMA and employs batching in the
hashtable.
Metrics. In our graphs, we use the term Total Mtps, to stand for the
total system throughput (from all machines) in million committed
transactions per second.
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8 EVALUATION
The main thesis of this paper is that we can leverage the locality
found in small deployments to increase throughput. To corroborate
this, we first compare the throughput and latency of DNL with
FaSST with 5 machines (§ 8.1).

Our thesis raises a crucial question. How big is a “small deploy-
ment”? In previous sections, we hypothesized that the three locality
optimizations scale differently. To characterize this we do a break-
down of the impact of each optimization as we increase the cluster
size to 10 machines (§ 8.2).

Then we perform two additional studies. Firstly, we focus on
network batching to better understand how it impacts performance
as a function of the load (§ 8.3). Finally, in § 8.4, we vary the number
of keys that are stored in each machine. This allows us to emulate
the system’s behaviour with a skewed workload (with very few
keys) and ensure that performance does not degrade with more
keys.

8.1 Performance in a small deployment
Figures 8 to 13 show the throughput of the four evaluated systems
across all six benchmarks when varying the number of threads. The
experiments are run with 5 machines. In the read-only benchmarks,
(O(1,0) and O(4,0)) the DNL protocols are the same, i.e., Dnl-RO.
Figures 14 and 15 show throughput vs latency of all evaluated
systems as the load increases.

In Smallbank, DNL protocols achieve about 100 Million transac-
tions per second (Mtps). FaSST achieves up to 23 Mtps. From [35],
DrTM achieves up to 35 Mtps, but with 2-way replication (we use
3), using two 100 Gbps NICs per node (we use one) and assuming
that 4% of the keys are accessed by 90% of transactions. Crucially
4% is not a small enough number to cause a high abort rate. In

§ 8.4 we show that DNL performance in Smallbank improves when
using only 4% of our default number of keys. Crucially, 4% is small
enough so that DrTM can cache all indexes for only these keys in
all nodes. This is very beneficial for DrTM, because servers can
Get the keys with a single RDMA Read. The question of how this
hot 4% is identified remains unanswered. In Tatp, DNL protocols
achieve up to 268 Mtps. FaSST achieves up to 51 Mtps. DrTM does
not run Tatp.

When we compare the three protocols of DNL, we observe that
their performance is very similar with the exception of O(4,2). This
is because the protocols take very similar steps unless the transac-
tion has Gets and Puts to different keys. This pattern exists only
in O(4,2). The difference is that on a Get, Dnl-4 performs read-
validation for the key, Dnl-1 locks all replicas of the key and Dnl-2
locks its primary. These differences are not visible when we do only
Gets, because then all protocols execute Dnl-RO or when Gets and
Puts are to the same key, because then this operation is treated as a
Put (more precisely a GetPut).

With respect to latency in Figures 14 and 15, we observe that
in Tatp, the 50th percentile latencies are very small in all systems,
because 70% of all transactions are Gets to a single key. The latencies
are similar in DNL with FaSST, for the the same throughput, despite
the batching on DNL. This is because the batching is opportunistic
and thus, when the load is small the batching is also small.

8.2 How big is a small deployment?
In this section we investigate the scalability of our three locality
optimizations when increasing the size of the deployment up to 10
machines. We focus on Dnl-4 and we run Smallbank and Tatp with
64 threads.

Firstly in Figures 16 and 17, we compare the total throughput in
9



V. Gavrielatos and A. Katsarakis et al.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Total Mtps

La
te

nc
y 

(u
s)

0

50

100

150

200

250

50 100 150 200 250

Dnl-4 50th Dnl-4 99th Dnl-2 50th Dnl-2 99th Dnl-1 50th
Dnl-1 99th FaSST 50th FaSST 99th

Figure 14: Tatp: Latency vs Throughput
Total Mtps

La
te

nc
y 

(u
s)

0

200

400

600

20 40 60 80 100

Dnl-4 50th Dnl-4 99th Dnl-2 50th Dnl-2 99th Dnl-1 50th
Dnl-1 99th FaSST 50th FaSST 99th

Figure 15: Smallbank: Latency vs Throughput

Machines

To
ta

l M
tp

s

0

50

100

150

200

3 4 5 6 7 8 9 10

Dnl-4 FaSST (32 threads) FaSST (64 threads)

Figure 16: Smallbank: scaling up to 10 machines
Machines

To
ta

l M
tp

s
0

100

200

300

400

3 4 5 6 7 8 9 10

Dnl-4 FaSST (32 threads) FaSST (64 threads)

Figure 17: Tatp: scaling up to 10 machines

Machines

To
ta

l M
tp

s

0

25

50

75

100

125

150

175

3 4 5 6 7 8 9 10

no-opts nw-batch ht-batch local-reads -ht-batch

Figure 18: Smallbank: throughput vs machines with opts
Machines

To
ta

l M
tp

s

0

100

200

300

400

3 4 5 6 7 8 9 10

no-opts nw-batch ht-batch local-read -ht-btach

Figure 19: Tatp: throughput vs machines with opts

Machines

0

5

10

15

20

25

30

35

40

45

3 4 5 6 7 8 9 10

ht-batch nw-bw goodput nw-batch packet-rate

Figure 20: Smallbank: analysis of batching
Machines

0

5

10

15

20

25

30

35

40

45

3 4 5 6 7 8 9 10

ht-batch nw-bw goodput nw-batch packet-rate

Figure 21: Tatp: analysis of batching

10



639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Dandelion: In-Memory Distributed Transactions with Few Machines

million transactions per second (Mtps) of Dnl-4 with FaSST as we
increase the number of machines. Note that we show FaSST with
both 64 and 32 threads. This is because 64 threads is our default, but
FaSST maximizes throughput with 32 threads. As the number of
machines increases the gap betweenDnl-4 and FaSST closes because
locality decreases. However at 10 machines DNL offers more than
3x higher throughput in both workloads. Figures 18 and 19 show
the total throughput of Dnl-4 as we increase the cluster size and
as we add and remove optimizations. Specifically, no-opts includes
none of the optimizations. We incrementally add optimizations:
nw-batch adds network batching; ht-batch adds hashtable batching;
local-reads adds the ability to read from local backups. Finally, -
ht-batch removes hashtable batching, but leaves local-reads and
nw-batch.

Without any of the optimizations DNL’s performance is similar
to FaSST. Network batching is by far the most influential optimiza-
tion and scales well up to 10 machines. Ht-batch and local-reads
work best when employed together. This is shown in the last bar
when we remove hashtable batching, where a lot of the benefit of
the local-reads disappears. This is because with local reads we have
a bigger opportunity to batch in the hashtable. When we remove
batching, we can no longer prefetch the keys for the local reads;
hence we must wait for memory in each request. In Smallbank, the
cumulative benefit of the two optimisations ranges from 38% with 3
machines to 10% with 10 machines. In Tatp, the same benefit ranges
from 50% with 3 machines to 10% with 10 machines. Tatp benefits
more, as it is read-intensive.

Recall that, when we employ local reads, we pay an overhead on
writes which must set and reset the readable flag on backups. As the
number of machines increases, the percentage of reads that can be
executed locally decreases. In Smallbank which is write-intensive,
the overhead surpasses the benefit with 6 machines.

Figures 20 and 21 offer a deeper dive in the impact of network
and hashtable batching. All optimizations are open for these figures.
Note that they y-axis shows a different metric for each of the bars.
For ht-batch and nw-batch it shows the average number of requests
that are being batched to the hashtable and network respectively.
For nw-bw it shows the Gigabits per second (Gbps) that are sent
by each node; goodput is the nw-bw (in Gbps) minus the packet
headers. Finally, for packet-rate, the y-axis shows millions packets
per second sent by a single node.

Note that, as the number of machines increases both types of
batching decrease. As network batching decreases the packet rate
increases, as we need to send more packets. For this reason the
difference between nw-bw and goodput also increases, as more of
our nw-bw is spent on packet headers.

Finally, we note that even though nw-batch steadily decreases
with more machines, it still provides a 5x improvement with 10
machines. This is because, as we saw earlier in Figure 5, even a very
low batching degree has a very significant impact on throughput.

8.3 Impact of network batching
In this section we further study network batching by varying the
amount of ongoing transactions in each machine. Specifically, in
Figure 22 we plot the Mtps for Dnl-4 when running Smallbank,
while increasing the number of ongoing transactions per thread
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Figure 22: Smallbank: Throughput vs average packet size.

(i.e., the TxCtxs). We use 64 threads and 5 machines. We also plot
the average payload size in the right y-axis and the inlining limit
(188 Bytes). Note that "payload" here refers to a network packet’s
payload. Recall that when the payload of a packet exceeds the
inlining limit, then it cannot be inlined in the descriptor (called
“Work Request”) that the NIC reads from the send queue. Instead,
the descriptor will contain a pointer to the payload, which the NIC
must read through a second DMA.

The first observation is that as we increase the number of TxCtxs,
the average packet size is increased. This is because, with more
TxCtxs, network batching increases. The second observation is that
while initially throughput scales with the packet size, the scaling
stops at around 75 TxCtxs, even though the average packet size
continues to grow. This is because of the inlining limit: when a
packet’s payload exceeds 188 bytes the NIC needs to perform a
second DMA, significantly hindering throughput.

8.4 Varying keys and contention study
In Figure 23, we run Smallbank in 5 machines with 64 threads
and we vary the number of keys. Note that the x-axis is in log
scale. The figure also points to the default number of keys used in
previous experiments (52m). It also explicitly points to 4% of that
(2m), because both DrTM and FaSST assume that 90% of accesses
go to 4% of the keys to represent skew (discussed in § 8.1). We start
with 3072 keys per machine (1024 primaries and 2048 replicas) up
to 1 billion. With fewer keys, we simulate skewed workloads. For
instance, with 3072 keys per machine, we see that the abort rate
is very high because Smallbank is write-intensive. As the number
of keys increases, the throughput oscillates around 100 Mtps. The
oscillations are due to the different occupancy in the hashtable. For
example, when moving from 800m keys to 1b, throughput improves,
because a bigger index is needed for the 1b, which however has a
lower occupancy.

The fact that the performance stabilizes around 100m Mtps also
points to the fact that with 2MiB hugepages, the pressure on the vir-
tual memory subsystem (TLBs, walkers, and MMU caches) remains
manageable.
Summary. We evaluated the impact of our optimizations with up
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Figure 23: Smallbank: Committed and AbortedMtps of Dnl-4 varying
the number of keys stored in each machine.

to 10machines and concluded that network batching continues to be
very impactful with 10 machines, but there is a trend to hint that its
impact will be reduced with a higher number of machines. Batching
in the hashtable is most beneficial when used in conjunction with
local reads from the backups, however its benefits decrease as we
increase the size of the deployment. Local reads to backups scale
withmoremachines in read-intensiveworkloads (e.g., Tatp) butmay
hurt performance in write-intensive workloads (e.g., Smallbank) on
deployments of 6 or more machines.

9 RELATEDWORK
FaRM [11, 12, 33] sparked the research interest in in-memory,
RDMA-enabled, transactional KVSes. Since then, a number of works
have improved on various aspects of its design.

Most of the discussion has been focused on RDMA [10, 34].
FaSST [18] exposed a number of performance issues caused by
one-sided RDMA and argued for two sided. Storm [31] argues
that the issues can be solved and in-memory transactional KVSes
should use one-sided RDMA. The DrTM series [7, 35–37] has com-
bined hardware transactional memory with RDMA, arguing for
using both one-sided and two-sided. RCC [34] evaluates a num-
ber of protocols and also argues for a hybrid approach [34]. Other
works [15, 17, 22, 23, 28] have focused on the low-level details of
RDMA, creating guidelines on how to use it best. RIMA [38] ex-
posed an important issue when dealing with variable size messages,
and proposed a microarchitectural solution.

In addition, there are several in-memory transactional KVSes
that target specific use-cases. Zeus [21] focuses on transactions that
exhibit locality. Note that this is an orthogonal kind of locality to the
one we have exploited. NAM-DB [5, 40] offers Snapshot Isolation
over disaggregated memory which can be accessed through one-
sided RDMA. FORD [42] offers Strict Serializability over the same
architecture, while G-Tran [6] focuses on graphs.

Crucially, none of these systems have studied optimizations for
small deployments, such as network batching.

There have also been other RDMAnetworking libraries. Flock [29]
offers RPCs and batches messages from different threads in the same
network packet. Crucially, Flock does not require any collaboration
from the above layers, hence can be easily adopted by existing
systems. While an essential feature for a library, this is significantly

limiting for performance. We opted on the side of performance.
ScaleRPC [8] focuses on scalability with respect to one-sided RDMA.
The solutions provided could be used in an RPC library on top of
one-sided (we use two-sided). However, with network batching, we
send significantly fewer packets per second, substantially decreas-
ing the pressure from NIC resources that can otherwise hinder scal-
ability. Odyssey [14] contains an RDMA-based networking library
that uses two-sided similarly to eRPC and also supports network
batching similarly to DNL. However, it does not provide most of
the features found in eRPC that are crucial for a complete system.
Notably, high-performance implementations of single-key replica-
tion protocols have used network batching [14, 20], but have not
highlighted its impact in their implementations. Finally, a number
of systems have studied transactional protocols, without a focus
on the networking [4, 16, 39, 41].

10 DISCUSSION
Why not use CXL directly instead of RDMA?. CXL does not
provide fault tolerance or transactional guarantees – not even co-
herence for objects that spanmore than a single cacheline. Protocols
like FORD implement fault-tolerant transactions in via one-sided
RDMA that resembles the CXL setting. However, comparing Dan-
delion to FORD would be unfair, as FORD is significantly slower
than Dandelion (e.g., in 3 servers running TATP and Smallbank,
Dandelion achieves 200M and 75M txs/second, respectively, while
FORD is an order of magnitude slower). This is because FORD’s
protocol is limited to the cumbersome one-sided RDMA semantics,
which includes the inability to batch any requests. Note that the
load batching is also not exploitable by CXL accesses.
OLAP workloads. Dandelion primarily targets fault-tolerant
OLTP workloads (similar to prior work—FaRM, FaSST, DrTM). Yet,
parts of Dandelion have been used by another internal product
to implement high-performance OLAP operators, including joins
and aggregations. However, in this case, fault tolerance through
replication was stripped down as it was not a requirement of the
OLAP solution.
Protocols and concurrency control. Prior work has empha-
sized the importance of protocols and concurrency control in the
performance of distributed transactions. We found that within a
local-area network deployment, although different protocols play
a role in performance, other factors (e.g., batching here) can be
equally or more important.

11 CONCLUSION
In this paper, we presented DNL, an in-memory, RDMA-enabled,
distributed, replicated, transactional KVS. We focused on smaller
deployments and explored system- and protocol-level optimizations
to take advantage of the locality found on such a scale. Namely
network batching, hashtable batching, and reading backups. We
showed that the optimizations provide substantial performance
improvements (3.3-6.5x over a state-of-the-art system), we charac-
terized their individual and combined benefits and stressed their
scalability limits. In addition, we provide a framework to implement
new protocols, implementing and testing three protocols two of
which we had not seen before.
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